
AD-A257 297

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTI

'DA 1

THESIS
INFORMATION ENGINEERING AND THE

INFORMATION ENGINEERING FACILITY VERSUS
RAPID APPLICATION DEVELOPMENT

AND FOCUS

by

Lucille Charlotte Clark

December 1992

Thesis Advisor: Barry A. Frew

Approved for public release; distribution is unlimited.

92-29724

S1CURITY CA IFIATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 53 Naval Postgraduate School

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMOER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO rACCESSION NO.

11. TITLE (Include Security Classification)

INFORMATION ENGINEERING AND THE INFORMATION ENGINEERING FACILITY VERSUS RAPID APPLICATION

DETVELOPMENT AND FOCUS (UNCLASSIFIED)
12. PERSONAL AUTHOR(S)

Clark. Lucille C.
13a. TYPE OF REPORT j13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 11. PAGE COUNT

Maqrer's~ thesis FROM TO December 1992 - 231

16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S. government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer-rAidgd Software Engineerin CASE,
Inrorma tion ngineering, .i , ni okra ion 'Engineering

Facility, FOCUS, Rapid Application Development, Methodology

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Management Information Systems Department of the Naval Postgraduate School (NPS)

is considering using the information engineering methodology with Texas Instrument's

Information Engineering Facility (IEF), an integrated computer-aided software engineering

toolset, for application development. The costs and benefits of introducing information

engineering and IEF versus the rapid application development methodology and fourth

generation language, FOCUS, were analyzed through a case study developed in both IEF and

FOCUS. IEF offers a one model implementation, a standard computerized methodology,

consistency checking, management tools for the application developer, and superior

diagramming features and screen design whereas FOCUS offers rapid prototyping, numeric

functions, a report facility, security within the data model, inherent database

management facilities and excellent documentation. The benefits of IEF did not outweigh its

costs. RAD and FOCUS were determined to be the methodology and tool of choice respectively

for application development for the MIS department.

"20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[• UNCLASSIFIEDIUNLIMiTED C3 SAME AS RPT C3 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL ,22b. TELEPHONE (Include Area Code) - 2c. OFFIE SYMBOL

Barry A. Frew (408) 646-2392

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete 0 u.s. e fe l wiuU11 old wte6-. 4.

i UNCLASSIFIED

Approved for public release; distribution is unlimited.

Information Engineering and the
Information Engineering Facility verus

Rapid Application Development

and FOCUS

by

Lucille Charlotte Clark
B.A., Princeton University, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

December 1992

Author: SL/ ucilleft. Clark

Approved by:
B yFrew, Thesis Advisor /'3

Myung Suh, Second Reader

David R. Whipple, CE~an
Department of Administrativ~ence

ABSTRACT

The Management Information Systems Department of the Naval Postgraduate School (NPS)

is considering using the information engineering methodology with Texas Instrument's Information

Engineering Facility WIEF), an integrated computer-aided software engineering toolset, for

application development. The costs and benefits of introducing information engineering and IEF

versus the rapid application development methodology and fourth generation programming

language, FOCUS, were analyzed through a case study developed in both IEF and FOCUS. IEF

offers a one model implementation, a standard computerized methodology, consistency checking,

management tools for the application developer, and superior diagramming features and screen

design whereas FOCUS offers rapid prototyping, numeric functions, a report facility, security

within the data model, inherent database management facilites and excellent documentation. The

benefits of IEF did not outweigh its costs. PAD and FOCUS were determined to be the

methodology and tool of choice respectively for application development for the MIS department.

Aaoesslon 0or

NTIS GRA&I
DTIC TABR
Unarizounc ed
Justiftcatio

By- '
Di stribution/_

Ava-Unb111ty Codes

lAvSell ard/or
Dist Spec lal

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM DESCRIPTION 1

B. RESEARCH QUESTIONS 1

C. INVESTIGATIVE METHODOLOGY 3

D. STRUCTURE OF THE THESIS 4

II. SOFTWARE DEVELOPMENT METHODOLOGIES AND THE LIFE

CYCLE 6

A. DEFINITION AND CLASSIFICATIONS 6

B. METHODOLOGY CHARACTERISTICS AND EVALUATION

QUESTIONS 9

C. THE SOFTWARE DEVELOPMENT ENVIRONMENT 11

D. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) AND

ITS CRITICS 14

E. PROTOTYPING 21

F. INFORMATION ENGINEERING 28

G. RAPID APPLICATION DEVELOPMENT (RAD) 49

H. A TAILORED AND UNIVERSAL METHODOLOGY 56

III. SOFTWARE DEVELOPMENT TOOLS 59

A. RELATIONSHIP OF A TOOL TO ITS METHOD 59

B. FOURTH GENERATION LANGUAGES 60

iv

C. FOCUS . 66

D. COMPUTER-AIDED SOFTWARE ENGINEERING (CASE) . . 72

E. INFORMATION ENGINEERING FACILITY (IEF) . . . 80

F. SUMMARY OF METHODOLOGIES AND TOOLS 88

IV. BACKGROUND INFORMATION FOR THE CASE STUDY 90

A. MANAGEMENT INFORMATION SYSTEMS' SOFTWARE

DEVELOPMENT ENVIRONMENT 90

B. MINOR PROPERTY ACCOUNTABILITY SYSTEM

REQUIREMENTS 98

V. EVALUATION 104

A. INTRODUCTION 104

B. INVESTIGATIVE METHODOLOGY 112

C. TOOL EVALUATION 115

1. Data Modeling 116

2. Activity Analysis 131

3. Action Diagramming or Programming 139

4. Dialogue Flow 155

5. Screen/Report Design 165

6. Documentation, Training, and Technical

Support 174

D. METHODOLOGY AND TOOL SUPPORT FOR THE METHODOLOGY

EVALUATION 176

E. CONCLUSION 187

v

APPENDIX A: DATA MODELLING 193

APPENDIX B: ACTIVITY ANALYSIS 198

APPENDIX C: PROGRAMMING 201

APPENDIX D: DIALOG FLOW 213

APPENDIX E: SCREEN DESIGN 216

APPENDIX F: IEF SUPPORT FOR INFORMATION ENGINEERING 218

LIST OF REFERENCES 219

INITIAL DISTRIBUTION LIST 223

vi

I. INTRODUCTION

A. PROBLEM DESCRIPTION

The Dean of Computer and Information Systems at the Naval

Postgraduate School (NPS) is considering using the information

engineering methodology with Texas Instrument's (TI)

Information Engineering Facility (IEF), an integrated

computer-aided software engineering (CASE) toolset for

application development. Currently, the programming staff

uses a rapid application development (RAD) methodology and the

fourth generation language FOCUS. The purpose of this thesis

is to determine, through a representative case study, the

costs and benefits of introducing information engineering (IE)

and IEF versus using the current rapid application-development

methodology and tool, FOCUS. The results will determine, in

part, which methodology and tool will be used to develop

future projects of the Management Information Systems (MIS)

Department.

B. RESEARCH QUESTIONS

This thesis does not attempt to devise a radical new

approach to application development but rather evaluates how

certain methodologies and tools can contribute to the MIS

department. It presents an overview of the software

development life cycle, the software development environment,

and several software development methodologies; an overview of

fourth generation languages and computer-aided software

engineering (CASE); a specific overview of FOCUS and IE' and

the software development environment of the MIS department;

and an evaluation of the tools and their associated

methodologies based on a case study.

The case study consists of a bounded business area of a

middle-sized enterprise. A business area is considered to be

sufficiently bounded and constrained when (1) the accessed

data (2) the processes including their timing and coordination

(3) the business relationships with all their intricacies and

(4) the business rules and policies affected by the processes

and flows are all well known and clearly defined. (Haas, 1991)

The business area for the case study is the Minor Property

Accountability System and the medium-sized enterprise, the

Naval Postgraduate School. The direct and indirect research

questions to be answered are the following:

1. Is it worth the cost and effort to introduce information
engineering and CASE as the methodology and tool
respectively for a bounded business area for a medium-
sized enterprise that uses rapid appiication development
and fourth generation languages?

2. How does the information engineering methodology with IEF
compare to rapid application development with FOCUS in
terms of its costs and benefits?

3. What is the learning curve associated with the
Information Engineering Facility (IEF)?

4. What are some of the effective techniques for evaluating
methodologies, tools, and the software development
environment?

2

One should not generalize the results of this thesis to every

software development environment, organization, methodology,

fourth generation language or CASE tool. Nevertheless, the

results could be used as a guide to determine the costs and

benefits of introducing information engineering and/or CASE to

a rapid application environment which uses fourth generation

languages for a medium-sized organization. Other

organizations may use the interpretation of the analysis and

results to fit their requirements and environment.

C. INVESTIGATIVE METHODOLOGY

Initially, a literature review of the general topics of

software methodologies, fourth generation languages,

information engineering, and CASE was undertaken. Specific

research into the publications and vendor literature of FOCUS

and IEF followed. The Minor Property Accountability System

was chosen as the case study because it was developed using

both methodologies and tools and was of limited scope and

complexity. It was first developed by a MIS application

developer with RAD and FOCUS and then separately by the author

with IE and IEF. To determine the costs and benefits of the

current system, extensive interviews with the MIS Director,

the application developers, vendor, and other users were

conducted.

3

The methodologies and tools were analyzed according to

several subjective evaluation criteria and investigative

approaches. "Hands-on" experience and training in business

area analysis and business system design with IEF was used to

determine the costs and benefits of using information

engineering and IEF. The current Minor Property Accountabilty

System developed in FOCUS was used to compare IEF with FOCUS.

Note that a comprehensive evaluation of FOCUS or IEF to other

fourth generation languages or CASE tools was not conducted.'

D. STRUCTURE OF THE THESIS

Chapter II provides the definition and classifications of

a software development methodology and the software

development environment; an overview of the software

development life cycle and its criticisms; an overview of

saveral software methodologies (prototyping, information

engineering, and rapid application development) including

their advantages and disadvantages; and a discussion of a

tailored and universal approach to software development.

Chapter III provides a discussion of the relationship of

a software tool to its methodology; an overview of the general

characteristics of fourth generation languages and CASE tools;

'For a survey report on assessing the strengths and
weaknesses of development tools in the CASE, 4GL and DBMS
mainframe arena, the reader can order Computing Future's
Benchmark Series Survey Report, Chilington House, East
Chiltington, Lewes, East Susses, U.K. FAX 44 (273) 890375 Tel
44 (273) 890097.

4

a specific overview of FOCUS and IEF respectively; and

concludes with a brief summary of the interrelationships of

the methodologies and software tools.

Chapter IV provides the background information for the

case study, the Minor Property Accountability System. It

describes the application development environment of the MIS

department to include MIS' software development methodology

and the organization it serves. The functions of the Property

Management Department and the system requirements of the Minor

Property Accountability System are also documented.

Chapter V provides the analysis of the two methodologies

and tools based on the case study. It describes the problems

involved in evaluating methodologies and tools, the

investigative approach used, the implementation of each

facility in each tool, the evaluation, and a summarized

conclusion.

5

II. SOFTWARE DEVELOPMENT METHODOLOGIES AND THE LIFE CYCLE

The software methodologies and tools presented in the

following two chapters represent, for the most part, the views

of their proponents. Therefore, the reader should be

skeptical of any claims, especially by the vendor or source,

and realize that some of the literature serves as marketing

material. For example, James Martin's books are obviously

slanted toward the CASE tool, Information Engineering Facility

(IEF). In many cases, a new method is simply disguised as old

practices with new terminology. When conflicting opinions

have been published, they have been included. Unfortunately,

most of the literature is disappointedly "party-line.'

Notwithstanding, the purpose of the second and third

chapters is to present the background material for the

evaluation by explaining the concepts, advantages, and

disadvantages of software methodologies and tools. The case

study itself will compare two specific methodologies, RAD and

IE, and two specific tools, FOCUS and IEF, and provide the

basis for a comprehensive analysis and evaluation.

A. DEFINITION AND CLASSIFICATIONS

To avoid software development that is haphazard,

unplanned, and unstructured, a software development

methodology is followed. In general, a methodology is a

6

systematic approach to solving a problcm by prescribing a set

of steps and deliverables as well as rules to guide the

progress and analysis of work. Specifically, methodologies

include (1) the sequence of tasks (2) the outputs and the

deliverables from each task (3) a description of how to

perform the task and the personnel and training required, if

applicable, and (4) guidelines on how to succeed and what

pitfalls to avoid (Martin, 1991). Other characteristics can

include that a methodology be recorded, teachable, measurable,

and even automated.

With respect to software development methodologies, they

are based on an understanding of system development, how it

should be modelled, what the relevant design tools are, and

how they should be supported (Floyd, 1986, p.31). Software

development methodologies must also satisfy management's

requirements of minimizing project risk, minimizing cost,

ensuring timely delivery, and ensuring optimal use of project

resources. From a business perspective, the loss of assets,

the loss of customers, and not to mention, the loss of revenue

could result from poorly designed systems.

Many organizations confuse the techniques used by a tool

with the methodology. As Uluakar (1991, p.2) states, the

techniques or procedures used to implement the methodology may

vary with the available technology (such as CASE tools) and

with experience. Tools simply automate the-tasks and

techniques, although some tools may impose a certain

7

methodology. For successful implementation, a software

methodology must "mesh in concrete features and in the

abstract with the application domain, the organizational

approach to software development, and the organizational

environment." (Ginsberg, 1988, p. 19-9)

Current software development methodologies fall into three

general categories as illustrated in Figure 2.1: project

management methodologies which are more concerned with

management issues rather than the execution of individual

project phases; methods and techniques methodologies which

focus on the execution of the development cycle and tend to

address only one or a combination of phases; and integrated

methodologies which cover all phases of development, although

precedence is usually given to the methods and techniques than

to project management. Integration problems can occur when

combining several method and technique methodologies in order

to cover all phases of the software life cycle. Integration

is usually supported by an automated tool such as CASE.

(Jaakkola, 1991)

Whitten (1989, pp. 110-129) classify methodologies

according to whether they employ process modeling such as

structured programming and systems analysis and design; data

modeling such as information engineering and object oriented

design; or working modelling such as prototyping. However new

methodologies blend process, data, and working models.

8

Relative Coverage of Depth
of Development Methods

P*OJICTMANAGEMIW

Relative coverage of Scope
of the Life Cycle

Figure 2.1 Scope and Depth of Software Development
Methodologies (Jaakkola, 1991, p. 7)

B. METHODOLOGY CHARACTERISTICS AND EVALUATION QUESTIONS

Some characteristics of methodologies, also used as

evaluation criteria, are as follows (Ginsberg, 1988, p. 19-8):

"* the activities covered by the method

"* the extensiveness of the method

"* the method's appropriateness for various application areas

"• the method's ability to incorporate the requirements of
the target system

"* the method's support of user involvement

"* the method's ability to incorporate change

"* the method's support of project management

"* the availability of automated tools supporting the method

9

* the availability of training to support the method

Floyd (1986) presents some additional characteristics of

methods such as their relation to a theoretical basis of

systems development, be it a structured theory of analysis and

design or the concept of systems development as a process of

communication and cooperation; and the coherence of a method,

how closely related are its guidelines and whether the method

is based on one overall strategy.

Martin (1991) presents what he considers good and bad

properties of methodologies. A good methodology should:

"* be fully adaptable to circumstances versus being rigid

"* minimize manual work versus being work intensive

"* assume developers are intelligent and creative versus a
"bureaucratic" approach in which developers are not
allowed to think on their own

"* computerized so that the methodology can be easily adapted
and integrated with expert and project management systems
versus paper methodologies

"* provide proven guidelines for success, warnings of the
pitfalls involved, and checklists so that the developer
can apply these guidelines intelligently and flexibly
versus an inflexible set of tasks

"* make sense to those who use the methodology versus the
developers not knowing why certain tasks are really
necessary

A successful methodology should act as a guide to development

(not a burden) allowing the developers trained in the tools

and techniques to use their own initiative and creativity to

build a quality system to meet their users' needs.

10

Other key questions for evaluating a methodology include

(Ginsberg, 1988, p. 19-9):

"* Does the method provide an effective means for developing,
analyzing and communicating the project requirements and
the resulting design?

"* Does the method mesh with the existing organizational

development style?

"* Do the benefits of technology justify the training time?

"* Is there available information about the method's use on
comparable projects?

"* How did the use of the method/tool affect those projects?

"* What other factors affected the success/failure of those
projects?

"* Is the methodology clearly documented? Does it focus on
deliverables instead of activities?

"* Can the developer use metrics with it?

"* Is it CASE tool independent?

"* Does it cover the entire life cycle including maintenance?

Floyd (1986, p. 31) states "that you have to place yourself

within the system development process as viewed by the method

to really understand it." Indeed, that is the objective of

the case study of this thesis.

C. THE SOFTWARE DEVELOPMENT ENVIRONMENT

Of special consideration when selecting a methodology is

the software development environment (SDE). How does the

methodology fit the organizational environment and the

application area(s)? The SDE consists of all the resources

11

necessary to engineer software: the methodology, the tools,

and the people (customer, developer, user, maintainer,

management, etc.). Figure 2.2 illustrates the major elements

of the SDE. According to Corbin (1991, p. 28) "Some call this

[the SDE] a software management process. Others call it

idealistic." The overall objective of the SDE is to reduce

system development costs, maintenance costs, and personnel

turnover.

Specifically, the benefits include:

"* improved problem definition

"* selection of the right problem according to the customer

"* joint customer/IS responsibility and accountability

"* acknowledgement of customer ownership of the system

"* reusability of software, models, and data definitions

"* acceptance of a consistent methodology

"* productivity improvements through teamwork and development
support tools

A systems development methodology is just one part of the SDE

and provides consistency from one project to another, reducing

training. Other benefits include improved system quality,

reduced development and maintenance costs, increased team

productivity and a reduction in the time to implement business

strategies. (Corbin, 1991)

12

-- PROJECT" BUSINJESS ARIIETn
(J~AtI~ME~TPLAN

(EDUCATIONI ýMIIOLOGIE
& TRAINING

-TA•NDA..... ENVIRONMENT (Q2 IMIQUES

'TECIINO0LOGav- (PLCIE &EnC
QPLIAF~nM~ PR OCE DURnE S

Figure 2.2 Major Elements of the Systems Development
Environment (Corbin, 1991, p. 29)

The SDE is characterized by a number of factors (Jaakkola,

1991, p. 7):

"* the mix of the applications portfolio including new
developments, enhancements and the maintenance of existing
systems

"* the classes of applications such as custom development,
software packages, modified software packages, etc.

"* the scope of applications: corporate, departmental, work
group, and end user

"* the combination of old and new technologies

"* the degree of end user involvement in the systems
development process

13

mmm •m m R m i mml U m• | mumm wm ~ m-A

"* the degree to which automation is used -- the technical
production environment

"* the application orientation -- the type of problems to be
solved and dominant problem areas

"* the system development setting -- the particular mode of
operation between developers and between their customers
and users

To mature into a software producer, an organization requires

sound business practices, an obsession with continuous process

improvement, and the wise use of technology (STSC, 1992, p.1).

D. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) AND ITS CRITICS

A life cycle is defined as a series of orderly,

interrelated activities resulting in the successful

completion, delivery, and support of an information system

(CASE, 1986, p. 132). Methodologies can support one or all

phases of the life cycle. Often the terms methodology and

life cycle are combined especially when the methodology

supports all phases: an integrated life cycle methodology.

One cycle employed in the design and development of

information systems is called the Systems Development Life

Cycle (SDLC). This conventional life cycle (Figure 2.3) is

characterized by development with the following sequence of

general activities (Agresti, 1986, p. 2):

* Specification -- a statement of "what" the software will
do, followed by a detailed analysis of the requirements
including the desired functions, performance standards,
and interfacing

14

"* Design -- "how" the software will meet the requirements;
the structure of the software modules that perform
specified functions; the data structure, software
architecture, procedural detail, and interfaces

"• Code -- implementation of the design in a programming
language

"* Test -- verification that the code executes without
failure; validation so that the completed software is
acceptable to the users

"* Operations and Maintenance -- implementation and evolution
of the software to meet changing needs

The common waterfall model of software development

captures the major top-level phases of the software

development process. Of these phases, design is emphasized.

The conventional life cycle model and its variations represent

a careful and systematic approach to software development by

employing a series of steps in a particular order. The

perceived benefit of using this structured engineering

approach, including the strict controls via documentation and

walkthroughs, was justified in the past for costly and complex

programs.

Structured methods also appeared in the early 1970's to

support the major activities of the waterfall model. These

methods were a collection of procedures and concepts to

increase the productivity and effectiveness of software

development organizations. As such, structured techniques

shifted attention from the programming phase to the front-end

analysis and design phases.

15

Validation

SiolOpratar Plnsan
r owwements.

Validationoe

Figure 2.3 The WP"Xa~tderfls oeloihgSfwrnLf yl

(Frey, 1987, p. 11

16-e dsg

Elements of the structured methods include (Frey, 1987, pp.

18-19):

"* structured programming -- composing program logic from
restrictive control structures: sequence, selection (if-
then, CASE), and iteration (do-while); supports the
construction, delivery, and maintenance phases of the life
cycle

"* structured analysis -- guidelines and graphical tools
which can show the flow of data, the storage of data, and
the processes that respond to the change of data; does not
show control; the objective is to accurately define
requirements that can be easily understood by the user;
addresses the study and define requirements phases

"• structured design -- for factoring programs into
independent, highly cohesive (each module should support
one and only one function) and loosely coupled modules
(each module should be minimally dependent on other
modules); supports the design phase and indirectly
supports the construction, delivery, and maintenance
phases

Structured analysis and design are companion, process-

centered methodologies: analysis builds the requirements and

design transforms the model into a top-down structure for

programming. However, using these methods requires a

tremendous amount of cross-referencing of data from one phase

to the other and a lot of repetitive activity (Frey, 1987, p.

19).

It has been recognized by many that the waterfall model of

the software development and its variations (not necessarily

its structured methods) is dead. However, the waterfall model

does provide a well known terminology base and a common

17

framework in which to discuss other life cycles and their

associated methodologies.

One of the most common critiques of the conventional life

cycle is that it represents a static, versus an evolutionary,

view of the software process. For this reason, the waterfall

model is primarily used when the problem and situation are

well know and defined. (Frey, 1987) Unfortunately, this is

rarely the case because the development process and automation

can easily change the user's perception of what is possible

and can often change the user's environment as well. Another

criticism is that the conventional life cycle reflects the

time period in which it evolved -- when software was developed

by skilled professionals and computer processing time was an

expensive resource (Agresti, 1986). Certainly, there were no

automated support tools or techniques -- no personal computers

with advanced graphics, no rapid prototyping techniques, and

no local area networks, for example. indeed, to McCracken and

Jackson (1986, p. 24) "to impose this concept (the SDLC] on

emerging methods in which greater responsiveness to change is

possible, seems to be sadly shortsighted."

The waterfall method reflected a systematic and analytical

progression of software development which deferred

implementation and coding to the later phases of the life

cycle. Specification was not interleaved with implementation:

the "what" or the requirements of the system were separated

from the "how" or the design and implementation of the system.

18

In other words, there is an inherent weakness in the

conventional life cycle between analysis and synthesis.

Physical limitations of the hardware, imperfect foresight,

financial considerations, or other valid reasons can easily

(and frequently do) change the behavior of a system which

requires modification of the specifications. Therefore, an

executable behavioral model of the system is necessary early

in the life cycle to assess performance and to determine

unanticipated implications and interactions of the design.

Like the user that redefines the requirements when the system

is demonstrated, so too does implementation change the

specifications. (Swartout, 1982, pp. 26-27)

In short, active behavior promotes operational

understanding. As an analogy, consider learning a new board

game. It is common for the players to briefly- review the

rules and then start playing. The early experience of playing

the game is a more effective way of learning the game than

continuing to read and analyze the rules. Unlike the

traditional methods that capture only the static or data

structure aspects of the problem, it is also important to

capture the dynamic and behavioral aspects. (Agresti, 1986,

pp. 11-12)

As for top-down development, Keuffel (1991) recommends

faking itl He states that logically organized diagrams are

for books and for presenting your work after it i-s finished.

"In the real world, information about systems is not often

19

obtained in such a prescriptive, hierarchically decomposed

manner." (Keuffel, 1991, p. 39) Nevertheless, he gives five

reasons why a rational design process makes sense: (1)

designers need guidance when overwhelmed by a complex task (2)

software development by following a process is better than

proceeding adhoc (3) a standard procedure assists good design

review and the transition of people from one project to

another (4) having a standard process makes measuring it

easier and (5) a standard process makes managerial review

easier. He recommends "mining" the system using whatever

procedure gets the job done and only spending enough effort as

necessary and no more!

The conventional life cycle appears lacking in the

following areas: it does not adequately address prototyping,

end user development, uncertain and constantly shifting

requirements, the interrelation of specification and design,

the use of automated tool support, and the need for

versatility. A new life cycle, on the other hand, would

encourage a flexible development process with executable

programs early in the life cycle and incorporate the use of

automated tools. Or, should we re-evaluate the traditional

methodologies to determine which stages can be omitted for

small systems development, and determine the risks associated

with such omissions? Or should management pay more attention

and allocate more resources to process improvement -- to

20

determine how the process of software development could have

been done better? (Jaakkola, 1991, p. 7)

But as Plauger (1991, p. 17) warns, "I cannot honestly

report any method that will guarantee success." Most of the

literature also warns that none of the new software

development methodologies eliminate or replace excellent

systems analysis -- a complete and accurate understanding of

the problem, the requirements, and the solution. The

shortcomings of the methods cannot be entirely eliminated

either by automated support.

E. PROTOTYPING

Growing software demands, advances in computer hardware

technology, and continuing frustrations with the time-

consuming traditional life cycle process have driven software

developers to pursue alternative life cycle methodologies.

One of the most appropriate and practical methodologies to

date is rapid prototyping. A prototype is a quick, cost-

effective and controllable model that conveys the look and

feel of the proposed system. Prototyping is defined as a

language-independent process for building models of

application systems during the software development process.

Prototyping is based on the premise that users really do not

know what their application should do or how it should

operate: "I don't know what I want but I'll know it when I see

it." (Fisher, 1987, p. 29) The practical truth is that

21

developers may build and test systems against specifications,

but users accept or reject systems according to current

operational realities.

Prototyping's main objective is to gain a better

understanding of the users' requirements and the behavior of

the system. Whereas the conventional life cycle imposed

unrealistic pre-specification of the requirements, which

hindered productivity, prototyping offers a more flexible,

iterative approach that encourages "exercising" of the

prototype, change, and experimentation. Prototyping's

characteristics include that (1) it is an actual working

system (2) it is comparatively inexpensive to build (less

than 10% of the developmental costs) (3) it can be developed

quickly and evaluated early in the life cycle (4) it can

provide a physical representation of key parts of the system

before implementation and (5) it usually performs only a

subset of the functions of the entire system and may not have

all the behavioral aspects (response time, internal control,

security, etc.) of the final product. (Fisher, p. 5)

A prototype is usually built with one of two strategies,

throwaway or evolutionary. In the throwaway approach, the

prototype serves as the specification for its replacement.

With the evolutionary approach, the initial prototype with

only its essential functional requirements becomes an

operational system with all the users' requirements

incorporated and fully implementable.

22

Which strategy is chosen depends on several factors.

First are the personnel resources. Second is the application

and the eventual use of the prototype. Some prototypes are

just explorative to determine initial requirements and

functions; some are experimental to address a proposed

solution before investing time, effort, and money; some are

evolutionary and develop into the fully implementable system;

some are used as a mock-up to determine user interfaces; and

finally some are used as simulations to measure certain

behavioral characteristics. The third factor is the hardware

constraints -- the prototype may react differently to the

load, the number of supported users, and the volume of data

than the final system. Finally, the fourth factor is the

availability of prototyping tools. (Fisher, 1987, p. 18-19)

The most promising candidates for prototyping are

managerial systems because the business environment keeps

changing and the system must react quickly to those changes.

In general, though, any application with dynamic displays,

user interaction, and frequent changes can use prototyping,

but the decision should be weighed against the application's

complexity. Prototyping according to Martin (1991, p. 109) is

valuable for interactive on-line systems when the users are

unsure of what they want, when the users understand the

functions better than the analysts, when there is room for

user creativity to improve the system, when the users do not

23

understand all the impacts of the new system, and when the

analysts wants to elicit ideas, among other circumstances.

Prototyping usually depends on the use of automated tools

such as fourth generation languages that include data

dictionaries, screen formatters and painters, and report

generators. These tools provide the user interface, a scheme

for the organization of the data and access to the data, and

the system's interface with its physical environment.

Using fourth generation languages, a developer can

construct a prototype system consisting of a mixture of data

entry screens, printed reports, external file routines,

specialized procedures, and procedure selection menus all

based on the logical database structure developed during the

data modeling process. A suggested procedure for developing

a prototype presented by Fisher (1987, pp. 30-31) is

described:

1. Define the basic database structure derived from the
logical data model. Later on, the database structure
will contain test data for specific tests.

2. Define printer report formats: what data elements to
print and what selection and ordering criteria.

3. Define interactive data entry screens -- the right
information in the form of prompts, labels, and help
messages and validate the input. Use defaults as often
as possible initially.

4. Define external file routines to process data that is be
to submitted in batches or created by the prototype for
processing for other systems.

24

5. Define algorithms and procedures to be implemented by the
prototype and the finished system. This may include
support routines solely for the use of the prototype.

6. Define procedure selection menus. Concentrate on the
functions performed as the user would perform them. This
may result in combining disparate procedures into a
single function executed with one command from the user.

7. Define test cases to determine if data entry validation
is correct, that procedures and algorithms produce
expected results, and that system execution is clearly
defined throughout a complete cycle of system operations.

8. Reiterate this process by adding report and screen
formatting options, corrections for errors discovered in
testing, and unambiguous instructions. Suspend the
process if the changes become cosmetic rather than
functional.

The benefits of prototyping include (Fisher, 1987, p.

7):

1. the identification of requirements and problems early in
the life cycle saving further expense and time later on;
a conversational requirements tool

2. reduced development time through the reiterations of the
prototype and through the knowledge gained by using it

3. the development of a system based on true versus
perceived requirements

4. the ability to adapt to changes in the system's
requirements

5. simplified and accelerated training by providing an
operational system prior to implementation

6. a more accountable and visible system for management
leading to increased communication with management

7. development effort and time is reduced by not including
complete functionality

8. information requirements can be easily validated

25

9. the early elimination of useless functions and
requirements (it is easy for users to tell you what they
do not like)

10. a potentially increased chance of user acceptance
especially if the users are actively involved in the
prototyping process

There are also a number of disadvantages to prototyping
(Fisher, 1987, pp. 6-8):

1. an increased tendency to skip through analysis and design
which could lead to a cycle of code, implement, and
repair (if there is not a specification, do not
prototype); the time spent fixing the problems may exceed
the time required to do detailed analysis and design

2. could lead to a design that is not flexible because it
was developed too quickly

3. it is difficult to determine when to stop prototyping
especially when the environment is unstable or extremely
dynamic which can lead to a delayed prototype and "there
is nothing worse than a rapid prototype that isn't"
(Agresti, 1986, p. 6)

4. a prototype system may evolve into production before it
is ready

5. end users may make unrealistic demands of the prototype
and the users may eagerly adapt the prototype as the
fully functional system prematurely

6. prototypes do not address the full range of operations
such as security, back-up procedures, system testing,
reliability and training and may not be able to handle
the volume of data or perform accurate calculations

7. the actual performance and ease of maintenance of the
prototype cannot be ascertained

To guard against these disadvantages, Agresti (1986, p. 6)

proposes writing a prototype statement of work defining the

objectives of the prototype and the range of its capabilities.

Fisher (1987) proposes performing an impact analysis of any

26

changes to the prototype in order to justify the cost of the

resources. At each iteration, he recommends determining how

much functionality is present, if the design is maintainable,

and whether further iterations are cost-effective.

How can prototyping be incorporated into a manageable

development model or life cycle without disrupting its

effectiveness or without negatively influencing managerial

control of the development process? It is widely agreed that

prototyping does not take the place of the entire life cycle;

rather, the life cycle is supported by prototyping. Moreover,

its ramifications are felt throughout the life cycle because

prototyping can correctly define requirements early in the

cycle which, in turn, affects design, implementation, and

maintenance. It is generally agreed that prototyping should

be incorporated after the analysis phase so that the problems

of the information system are initially identified and

potential solutions determined. One difference between the

standard life cycle and the prototyping approach during

requirements determination is that the computer, through the

use of screens and reports, is used as the means of

communication rather than paper models. A development

methodology using prototyping and stressing evolutionary

requirements specifications allows for the design of a

flexible and usable system. Pressman's (1992) paradigm for

software development begins with an abbreviated representation

of the requirements; an abbreviated design specification

27

focusing on top-level architectural and data design rather

than detailed design; the development, testing, and refinement

of the prototype by the developer with the user; and finally

exercising of the prototype until all requirements are

formalized or until the prototype evolves into production.

F. INFORMATION ENGINEERING

Information Engineering is one of the components of James

Martin and Company's enterprise engineering framework

presented in Figure 2.4. The other two components are

business reengineering and total quality management. The

objective of enterprise engineering is to provide the tools,

techniques, and task structure to implement business

requirements that are resilient and responsive to continuous

change and improvement. Business re-engineering focuses on

the strategic vision and mission of the corporation;

information engineering provides the discipline for developing

integrated information systems for an organization; and total

quality management focuses on the quality and standards of the

deliverables for estimation and control of projects. (James

Martin & Co., 1992, p. 2)

The importance of including enterprise modeling into the

life cycle addresses the requirement to include the dynamic or

behavioral aspects of the enterprise as well as its business

rules and logic. The conventional top-down approach is based

on a stable data base and a stable framework; a new

28

fle-ento"riti.g

Focits Rgeneeri

011111"
&xmintitiy

- m - Am@--- -- - - -- - - - -Mnn.~',

000Ntk w~wee(*~ qetdrwyI

bitterg Ic~nqe acevbl

Figure 2.4 EnterprieEnierigFamwr (ae Mri
& Co., 1992,cP.o2

29e E91 er

methodology must model the enterprise from inherently unstable

views that can only be depicted in an evolutionary and dynamic

manner. Some tools fail to capture essential elements of the

information system such as the rational or logic behind

information flow which results in "shelfware rather than

effective communications and documentation vehicles." (Due,

1991, p. 54-56)

Enterprise modeling requires that an effective methodology

be supported by tools that can do more than just draw

pictures. An effective enterprise modeling methodology should

use one technique that consistently states the enterprise's

goals, purpose, context, strategy, markets, threats and

opportunities, critical success factors, controls, policies,

procedures and business rules. Moreover, the technique should

allow users at every level to view the organization from their

perspective at any time. For example, "a financial view would

allow the dynamic display of the financial implications and

the consequences of changes to the views of the enterprise

model by interactively modifying and executing the

enterprise's financial model." (Due, 1991, p. 57) The views

would be integrated by the underlying logic of the enterprise

and would allow mapping of function, information, state,

organization, resources, control, security, etc. 2 The rules

2One interesting approach involves developing the
enterprise model as theater with acts and scenes as the
functions; the actors as the subjects who manage the functions
and resources; and the objects as the items being acted upon.

30

of the information system should be tested against the user's

view of the enterprise. Other requirements for enterprise

modeling include effectively recording the state and impact of

the external environment, be it government regulations, the

economy, or technology; being able to integrate enterprises

physically distributed; and being able to incorporate

technology-independent logical modeling. (Due, 1991, pp. 54-

57)

Information engineering incorporates this concept of

enterprise modeling which differentiates it from conventional

methodologies. Information engineering is formally defined as

"the application of an interlocking set of formal techniques

for the planning, analysis, design, and construction of

information systems on an enterprise-wide basis or across a

major sector of the enterprise" or defined in terms of its

primary objective, "an organization-wide set of automated

principles for getting the right information to the right

people at the right time." (Martin, 1989, p.1) The

information engineering methodology considers information to

be a strategic asset and as such should be planned, designed,

coordinated and made available when needed.

Each of the actions are placed in their appropriate role and
state as the "play" unfolds. As subjects and objects change,
they are viewed by the audience at different -roles at
different times. This play-scripting or entity life history
approach can provide a standard framework for capturing and
displaying data, function, behavior, organization, and views
of the enterprise.

31

Information engineering is based on an extension of

structured analysis and design techniques, entity data

modeling, systems integration, computer-aided software

engineering (CASE), and includes other modern techniques such

as rapid application development (RAD). It aims to produce

working systems faster than a third generation environment and

encourages strong design roles for users. Information

engineering claims to be more integrated than any other system

methodology by incorporating independent techniques into a

cohesive concept. (Martin, 1991)

Some characteristics of information engineering (Martin

1989):

1. Information engineering applies structured techniques on
an enterprise-wide basis versus a project-wide basis.

2. It progresses through a series of stages (information
strategy planning, business area analysis, system design,
and construction).

3. It has an evolving repository or encyclopedia of
knowledge about the enterprise, its data models, process
models, and system design.

4. It allows the integration of separately developed
systems.

5. It is supported by the use of automated tools.

6. It encourages end user involvement.

7. It recognizes the long-term evolution of systems.

8. It incorporates the strategic goals of the enterprise.

32

Several of the main benefits of information engineering

include (Martin, 1989):

1. the identification of strategic system opportunities
which could create a competitive advantage by building
supporting information systems before the competition

2. relating the data processes of the organization to its
goals

3. integrating different systems--the same data is
represented in different systems and the data and
process models are created independent of any specific
application area

4. rapid development and change of the system through
automated tools

5. better control and understanding of complex systems and
the interfaces between systems

6. the long-term evolution of systems

7. savings through the use of reusable design and code

8. the reduction of maintenance and backlog problems

9. a potentially highly computerized and integrated network

10o more time being spent on planning and design than on
coding

How are these benefits realized by information

engineering? Information engineering integrates separate data

processing and decision-support systems by employing a common

repository of planning information, data models, process

models, and design information. It seeks to maximize the

value of these systems by relating them to top-management

goals and critical success factors and seeks to automate the

work of building and integrating systems. It utilizes common

33

data entities, common rules relating to the data, and reusable

design and reusable code with the encyclopedia acting as the

integrator for all parts of the information engineering

processes. Therefore, the objective of information

engineering is to produce a set of fully structured and easily

modified systems based on the common models of the enterprise

and its data.

An overview of the levels or stages of information

engineering and the types of diagrams used at each level are

described and presented in Figure 2.5.

1. Information Strategy Planning (ISP) -- concerned with
strategic advantages, top management goals and critical
success factors; a high-level overview of the enterprise,
its functions, data and information needs; concerned with
how technology can be used to create new opportunities or
competitive advantages

2. Business Area Analysis (BAA) -- concerned with
understanding and modeling what processes are required to
run a specific segment of the organization, a business area,
and how these processes are interrelated with the data; a
more restricted conceptnal model

3. Business System Design (BSD) -- concerned with how
selected processes are implemented into procedures and how
these procedures work; involves end users and automated tool
support; the man-machine interface regardless of the
computing platform

4. Construction -- implementation of the procedures using
code generating 4GL, end-user tools, and prototyping; a
fully executable application that can be implemented in the
targeted computing environment

At this point, the reader should understand the difference

between functions, processes and procedures. Functions are

determincd during information strategic planning; represent a

34

* Organization Chart
* Function Decomposition

* Data Subjects 0 Hierarchy of Goals and
* Entity-Relationship Diagram Critical Success Factors

* Function Dependency Diagram
Stra tegy e Matrices Showing Relations

Among Planning Information

*Fully Normalized Data Model • 0 Process Decomposition Diagram
FullyNormalizdData M Process Dependency Model

* Data Descriptions a Process/Entity Matrix
A Process Life-Cycle Diagram

a Data Navigation Diagram

e Data Structure Diagram * OAti-Row Diagram

a Data Descriptions * Decision Tree

a Dialog Design
D Screen Layout

a Report Layout
a Prototypes

9 Program
View of Data * Action Diagram with Code

*Data * Code Generation
Description a Prototypes

Code

Construction

Figure 2.5 Information Engineering Stages and Tools
(Martin, 1989, p. 87)

group of activities that support one aspect of the

enterprise's mission; are on-going and continuous; are not

based on the organizational structure; and categorizes what is

done, not how. Processes are analyzed during business area

analysis; are specified activities executed repeatedly in an

enterprise; can be described in terms of inputs and outputs;

have a definable beginning and end; are not based on the

35

organizational structure; and also identifies what is done,

not how. Procedures, on the other hand, are analyzed during

system design; relate specifically to how a process is carried

out; and can change or be eliminated as technology changes.

The premise of information engineering (and logical data

modeling) is that whereas the procedures of an organization

can change, the data, functions, and processes remain

relatively stable. (Martin, 1990)

Uluakar (1991, p. 6) compares information engineering (IE)

to the Yourdon Structure Methodology (YSM) which utilizes

conventional structured analysis and design techniques

including data flow diagrams and structure charts.

IE and YSM life cycles are generally similar with several
notable differences. IE life cycle starts with
Information Strategic Planning (ISP) at the enterprise
level followed by analysis of the business area of
interest before focusing on a system. Business areas are
defined during ISP as pieces of the enterprise which can
be analyzed independent of one another. The scope of a
business area should be analyzed all at once ... to avoid
scope creep and future system integration problems. YSM
is currently lacking a strategic planning phase. In
absence of the business area concept, the YSM life cycle
starts with requirements definition for a particular
system."

In addition to this difference in scope, YSM's analysis
differs from IE's business area analysis in one other way.
In YSM, analysis includes modelling the required processes
and the flow of data in response to each event. In IE,
the processes required for each event are defined during
the analysis but the dynamics of the response (ie., the
flow of data among the processes if more than one process
is involved) is not modelled until design."

Uluaker claims that problems encountered with the

structured methods are avoided in IE because data flow

36

diagrams are not used. For specific theoretical comparisons

on each model's components, the reader is referred to his

paper. It is agreed that IE and YSM are based on the same

principles and that the deliverables have few differences.

However, IE claims to eliminate the redundancy between data

flow diagrams and the structure chart because analysis and

design are integrated with IE. Changes do not have to be made

to both the DFD and the structure chart.

Before describing the stages of information engineering it

is important to discuss the so-called heart of IE, the

encyclopedia. The encyclopedia is a computerized repository

which includes not only the common data dictionary but also a

complete coded representation of the system's plans, models,

and designs. As an analogy, a file contains code for how a

program will function; a repository contains information for

how a system will function. It also provides a specific

interface to control access to the objects it contains.

Logical definitions of the organization are stored in a well-

structured format. Usually an entity relationship data model

is used for the repository information because it allows

explicit definition of relationships (Bloor, 1991). The

central encyclopedia also contains diagramming. tools that

apply rules for interlinking diagrams into a larger

perspective or compound view and checks for integrity; a

knowledge coordinator for checking the consistency of

perspectives created by different designers; and tools for the

37

central analysis of the collection of information. (Martin,

1989)

This centralized planning of information is organized by

subject rather than by organizational department which results

in simplified data flows, more complex data structures, more

consistent and accurate data, easier extraction of data when

procedures change, and less maintenance work. Moreover,

perspectives or views can be created by logically linking

multiple screen displays and data. For example a decision

tree can be connected to the structure code which can be

connected to text and/or other diagrams. Rules for each

diagram and for their relationships and their consistency

among multiple perspectives are facilitated by the

encyclopedia.

The Information Strategic Planning (ISP) stage determines

how automation fits into top management's strategies and how

to align system development priorities with business

priorities. Note that the information architecture is

developed independently of the current organization whereas

its implementation reflects the organization and its concerns.

The result is one of overall centralization with decentralized

implementation.

The objectives of ISP are to provide top management with

a view of the enterprise in terms of its goals, functions, and

critical success factors, and to identify the enterprise's

informational needs so that business strategy can be

38

translated into information strategy planning. ISP also

creates an architectural framework for further analysis and

design so separately developed systems will be integrated.

The traditional approach of building separate systems based on

each organizational unit fails to meet the integrated

requirements of today's business. ISP therefore serves as the

framework for implementing automated systems based on the

enterprise's strategic business goals.

The top layer of ISP includes the following activities:

1. Analysis of Goals and Problems -- a structured
representation of the goals and problems of an enterprise
with their associated organizational units, information
needs, and systems.

2. Critical Success Factor Analysis -- identifies those
areas that are critical to the success of the
organization; identifies critical assumptions that
require monitoring, critical information needs, and
critical decisions.

3. Technology Impact Analysis -- examines the business
opportunities and threats caused by advanced technology
and its potential impact on services, changes in
corporate structure, new products, etc.

4. Strategic Systems Vision -- strategic opportunities for
creating new systems in order to be more competitive; may
require restructuring rather than automation

The second layer is concerned with modeling the enterprise

and includes:

1. An Overview Model of the Functions of the Enterprise --
maps the business functions hierarchically; associates
the business functions with the organizational units,
locations, and entities through computerized matrices

39

2. Entity-Relationship Modeling -- creates a chart of the
entities and their relationships; an overview of the data
stored in the enterprise databases. Entities are
associated with business functions in a matrix and the
matrix is "clustered" to determine business areas.

In review, the enterprise model creates an overall

framework for future detailed analysis. It consists of an

overview of the entities in the enterprise, a decomposition of

the business functions, and a matrix mapping entities against

business functions in order to proceed to business area

analysis. (Martin, Book II, 1990)

According to James Martin (1990, p. 184) a business area

is clear-cut with definable boundaries; is small enough to

allow business area analysis, but large enough to take

advantage of a shared database in a naturally coherent way;

has no overlap of function with other business areas; and is

generally not updated by other business areas, although data

can pass between business areas.

A business area is defined as sufficiently bounded and

constrained when (1) the accessed data (2) the processes

including their timing and coordination (3) the business

relationships with all their intricacies and (4) the business

rules and policies affected by the processes and flows are all

well known and clearly defined (Haas, 1991). Texas

Instruments claims that business area analysis can proceed

without an ISP although Haas (1991) recommends not to bypass

the ISP for unbounded systems.

40

To determine which business area to develop first, the

following factors can be used to rank the projects (Martin,

1990).

"* Potential Benefit -- return on investment including
tangibles and intangibles; achievement of critical success
factors; achievement of goals; solution to serious
problems; the competitive impact

"* Demand -- business urgency; pressure from senior
management; assessed need; political overtones; current
management priorities

"* Organizational impact -- number of organizations and
people affected; whether organizations are geographically
dispersed; qualitative effect

"* Existing systems -- adequacy or value of existing systems;
relationship with existing systems; estimated future costs
of maintenance; operational costs; automation potential

"* Likely success -- complexity; degree of business
acceptance; length of the project; speed of
implementation; prerequisites; risks; project staff
availability and expertise

The objectives of business area analysis (BAA) are to

provide a more precise and clear understanding of a business'

data and activities (functions, processes, and procedures) and

their interrelationships. BAA refines the information

architecture model defined during ISP. Specifically BAA (TI,

Guide to the IEF, 1988, p. 113):

1. Identifies and defines the type of data required.
2. Identifies and defines the business activities of each

business function.

3. Defines the data required for each business activity.

4. Identifies the necessary sequence of business activities.

41

5. Defines how business activities affect the data.

6. Produces a plan for business system design. Normally
several business systems will support a single business
area.

BAA creates a fully normalized data model for

application design and construction; a model of the business

activities and their interdependencies; and a link between the

data and the processes by identifying the data used by certain

processes. Figure 2.6 presents the classical data and process

modeling techniques used. These tools and techniques are

explained in detail in Chapter V for the IEF integrated CASE

toolset.

1. Data Model Diagram -- a fully normalized data model is
built for the business area; an extension of the entity-
relationship model created during information strategic
planning

2. Process Decomposition Diagram -- the business functions
are decomposed into lower level processes and a tree-
structured decomposition is produced

3. Process Dependency Diagram -- also referred to as a
process flow diagram; maps the dependencies of processes:
process can only be executed after another is created;
shows the data flows from one process to another but does
not show the contents of the data

4. Process/Data Matrix -- maps the processes against
normalized data, showing which processes create, read,
update, or delete the data; ensures data and processes
have all been determined and the process dependencies
have been assessed correctly.

By defining common processes, non-redundant data modeling can

be achieved. Unlike many older, independent systems, which

usually had the same data defined differently in different

42

places often with different names, information engineering

instead represents all data in one encyclopedia and creates

different user views.

During process modeling, entities, processes or procedures

may apply beyond the business area or span many business

areas. Therefore, it is important to enforce the integrity

between business areas. Such analysis checks include data

flow connectivity (all flows are continuous and connected to

valid sources); data flow course analysis (determines the path

of data flow regardless of how many levels the data

traverses); data conservation (input must equal output); data

model completeness (all processes must be represented); and

process model completeness (a process must create or terminate

at an entity and all entities must be read or updated). It is

also necessary to identify key decision-making- processes.

What decisions should be made, where should they be made, who

should make them, who depends on the decisions, what

information is required for the decisions, and when or how

often should the decisions be made?

The final step in business area analysis is to prioritize

the projects identified during business area analysis and

determine where system development effort should be utilized.

The factors previously presented for prioritizing business

areas can be used. As a result of this analysis4 current

procedures may be eliminated or changed and high priority

requirements identified.

43

ComplexI
Business A~

Sm.

I5

Business Area Analysis

Data Model Process Decomposition Diagram

I >• 1
Entity/Process Matrix Process Dependency Miagrem

'--

* ~i-...t.-i,' - -0.-

Figure 2.6 Business Area Analysis Diagrams (Martin, 1990,
p.2001

44

As a result of business area analysis, the developer

usually knows which processes to implement and in which

sequence. 3 This information is extracted from the data and

process models into a design workbench which has tools to

facilitate prototyping and rapid application development. The

design workbench then drives a code generator. The end

products of the code generator are database code, test data,

job control code, and documentation. Thus, the purpose of

design and construction is to accurately translate a

customer's requirements into a design in sufficient detail

that it can facilitate the generation of code. 4 The term

integrated CASE (I-CASE) is used when the planning and

modeling tools are integrated with the design tools and the

code generator, all using the same encyclopedia. (Martin,

1990).

In the past, the tools for design were usually based on

text specifications which took time to develop; were difficult

to visualize; were prone to errors, omissions, and

ambiguities; could not be checked by a computer; and could not

be used as input to a code generator. Note that these tools

do not have to be linked to information engineering. Some of

I Design does not necessarily have to wait until BAA is
completed -- it can be retrofitted if necessary.

4 Reverse engineering proceeds somewhat in the opposite
direction: from unstructured to structured code
(restructuring)and from code to redesign (reverse
engineering). Other functions can be added to produce new
code for the improved system. (Martin, 1989)

45

the tools are illustrated in Figure 2.7. (Martin, Book III,

1990)

1. Decomposition diagrammer -- provides a high-level
overview statement about a design to be successively
decomposed into finer detail

2. Action Diagrammer -- facilitates the building of
structure procedures and structured code

3. Data flow diagramier -- shows the flow of data among
modules of procedures or programs

4. Data model diagrammer -- although used in BAA, this tool
allows portions of the overall data model to be extracted
for use in the design stage

5. Data structure diagrammer -- allows appropriate parts of
the data model to be represented as structures used by a
particular database management system

6. Screen painter -- allows quick screens design for
computer-user dialog

7. Dialog generator -- links the screens for the user
interface

8. Report generator -- allows the structure and layout of
a report can be created quickly along with calculations
of derived fields

9. Database code generator -- generated database code
directly from the data structure diagram

10. Code generator -- creates executable code from the
highest level specifications possible

11. Test data generator -- creates testing aids to generate
test data and facilitates a sequence of testing steps

These tools are not the answer to good design because a

designer can still produce incompatible, fragmented, and

poorly designed programs, although probably faster. The

generated code is only as good as the data obtained from prior

46

Structure Chart Diagram
Nodule Stnictwae OiuL Display Wd Edit Select Help DEIGNW

NJ VUWD CSONUER (IDIRS

Layout Diagram '

Sa'iewa tayout, Display Edit Select kr'.g Hep 0S

OAI L - UIE PASTE POAiT 7116 L- sUIN UE PA ____] L J

PIIN R W I M I C IJIR -010 11

FIF 2 -5S 051011 CISIOE ON 1013 FASTER

FF 3 - ELTE LS 0510 FROMCSOME PASTE 51R
Nodle ktion Diagri Display. Ad Edit Select Help DESIGN

...................... N lhidte Customw Heter

tMiP CASNERWIE

___________________ IF ITT ISED: DDCUSTOE 0 T10 CUIONE WY001.

14L IF FF, OE03750 DANK aaSONE ON CUSOMRo PASTER.
IF ff3 OMSSU, MElTE 0510 IORFO 0USTOME PASTER.
IF ff4 PIESU, RE11*1T I~t 0JS10/ElI MC

OR PFZ
9 UFF3

Action Diagram Up 1Il~tOT00.I

Figure 2.7 Some Diagrams used During Business System Design
(Martin, 1989, p. 115)

47

information engineering techniques and the resulting system is

only as good as its design. Sound information engineering

techniques for design must be applied. This includes

developing standards, using reusable components, and creating

an architecture that is flexible to change.

During design and construction, the designer determines,

among other things, what procedures are required to implement

certain elementary processes, whether multiple operations

should be combined into one procedure or combined with other

procedures, and how the user interface (screens, reports, the

layout) should be designed. For example, should the design

be highly structured to guide the user or dynamic so the user

can direct the system based on shifting priorities? Should

there be two levels -- one for the frequent user who may want

streamlined commands and minimal text and one for the beginner

who wants extensive help and descriptive text? What commands,

function keys, and display properties (prompts, reverse video,

etc.) should be standardized in order to create a consistent

user interface? (Texas Instruments, Book III, 1990)

To answer these questions, the designer must understand

the data involved, the activities performed, the interaction

between the data and the activities, as well as the underlying

information architecture and last but not least, the user's

environment. Design in the information engineering

methodology emphasizes end user participation in the design

48

process itself through workshops such as joint application

design and prototype reviews.

Maintenance can be performed, not by changing the code,

but by changing the design followed by regeneration of the

code. It may also be possible to optimiz performance by

modifying the design. The final design step is perform a

technical analysis to determine the implications of

implementing procedures on certain equipment or with a certain

language. The last two stages, transition and production,

involve the installation of the new system into its production

environment.

G. RAPID APPLICATION DEVELOPMENT (RAD)

Step-by-step software development is being replaced by

rapid application development (RAD) techniques, a more

intuitive approach that involves constant interchange between

developers and users at every stage of the development and

focuses on producing systems quickly. The users and analyst

define the screens and reports, the data design, the flow of

control, and the program's logic. RAD is employed for

projects with requirements that are difficult to specify in

advance and that do not use complicated algorithms. RAD

boasts that it can increase development speed and quality at

a lower cost. Just as information engineering offers long

term benefits for the future, RAD offers fast development for

today.

49

It builds on the information engineering methodology and

techniques. A comparison of the IE methodology and the

alternative RAD path is presented in Figure 2.8. RAD, defined

in the IE context, consists of two IE phases: (1) System

Planning and Design and (2) Construction and Cutover.

Information Engineering, in its entirety, is therefore

condensed into three phases: Information Strategy Planning,

Business Area Analysis, and RAD (Figure 2.9).

Planning ",Oeilysis oe!n C.i • ,u ~vi •onsuanm• Ynsie

IW F! con " -r

Figure 2.8 Traditional IE versus the Alternative RAD Path
(James Martin Associates, 1992)

RAD usually involves a small team of information experts,

a rapid prototyping capability, automated tool support such as

CASE, reusable code, incremental development, integrated joint

application development (JAD) and a rigid time line.

Incremental development is defined as dividing the project

into small and manageable pieces so that each can be analyzed,

developed, and delivered in a short time, usually a few

months. "RAD exploits the 80-20 rule; 80% of the value of an

50

hlnorrnation SIratcgy
Planning (ISP)

Figure 2.9 The Information Engineering Pyramid with RAD
(Martin, 1991, P. 351)

application can be achieved with 20% of the application. RAD

identifies and delivers the essential 20%." (Merlyn, 1992,

p.9) Developers and users benefit from the initial system:

the users' experiences with the initial system assist the

developer for the next phase. As a result, the final

application is closer to the user's solution, not the

programmer'Cs solution.

RAD as formally specified by James Martin (1991) is a

developmental life cycle used to develop systems faster

(months versus years) and of higher quality at a lower cost

with fewer people. To Martin, the four essential elements for

51

rapid development are tools, a methodology, 5 people, and

management. RAD in a modern environment integrates:

"* prototyping;

"* graphical computer aided modeling and design;

"* a repository of design information and reusable
components;

"* automation for enforcing design integrity;

"* an integrated code generator and testing tools;

"* thorough end-user interaction with developers aided by
tools

I-CASE tools go hand in hand with RAD because they offer

computerized precision, detail, integrity, and fast

development through technical design and code generation.

Martin (1991) stresses, however, that there is no

compromise between quality (defined as meeting the users'

requirements as effectively as possible upon implementation)

and speed of development. Burden (1991) warns that

introducing "rapid" to application design may mean hurried and

he needs proof that RAD serves to increase quality. Does

rapid really mean developing systems better so that it takes

less time? RAD should also fit into a planned infrastructure

so that systems can be integrated, taking advantage of shared

data and reusable designs. Isolated RAD should be avoided.

5As for the methodology, James Martin and Co. offer RAD
Expert, a computerized hyperdocument methodology which states
what is needed at each task, how to succeed at each task, and
even what to avoid so things don't go wrong.

52

None of the techniques of RAD replaces good and complete

analysis efforts. Vaughan warns of "RAD Trap":

RAD presents a potentially massive trap for the unwary,
and thus the proclivity to create a portfolio of
applications that were never conceived to work together
except in a highly complicated, evolutionary fashion--
without the benefit of an overall architecture. In the
last two decades of application development, the pendulum
has swung several times from increasing to decreasing
rigor and formality, and from strategic to tactical
approaches. The return to well-defined development
processes, with emphasis on early life-cycle phases and
the use of rigorous graphics techniques, makes RAD
possible. Enterprise modeling.. .helps define RAD projects
and ensure a shared information resource environment. RAD
is not an alternative to CASE disciplines---it builds on
them. Those who see RAD as "seat-of-the-pants"
development have missed its most critical aspects and will
find themselves creating bad applications rapidly (or
creating good applications without infrastructure, leading
to bad systems and high maintenance overhead). RAD only
makes sense after CASE methods, JAD techniques and
disciplined software processes have been established.
(Vaughan, 1992, p.9)

RAD according to James Martin (1991) is divided into four

phases: requirements planning, user design, construction, and

cutover or transition. Requirements planning determines the

functions of the system and the business objectives to be

solved. A joint requirements planning (JRP) workshop can be

designed so that all users jointly establish the requirements

and detailed functions for the system. I-CASE tools and

prototyping are commonly used with the computerized repository

serving as the input. The second phase, user design,

determines the nontechnical design of the system: the data and

process models, screen and report designs, detailed designs

and rough prototypes, again using the existing repository as

53

input. Usually two joint application design (JAD) sessions

are conducted: the first for the initial design and the second

for prototype review. Inconsistencies, incomplete data, or

ambiguity can be detected instantly with CASE tools. An

example of a typical analysis performed during a JAD workshop

includes:

"* determining what the steps are in the procedure

"* building an initial flow diagram showing the steps

"* examining each procedure step in more detail

"* for each procedure, create a partial prototype

"* address unresolved issues

At the end of the second session, the construction team

becomes involved to solidify the prototype designs, to divide

it into subsystems if necessary, and to test the procedures.

Its physical design and configuration compatibility with

existing hardware are also taken into consideration. Outputs

of the construction phase include coded database descriptions,

executable and optimized program code, and technical

documentation. The last stage is to cut over to the new

system which may necessitate additional training,

organizational changes, and parallel operations of the manual

system.

Martin (1991) also advocates the use of SWAT (Skilled with

Advanced Tools) teams that join the RAD project at the first

JAD workshop. These small yet productive teams take the

54

output from the JAD workshop and complete production usually

within a three month time period. Some favorable factors that

have led to SWAT team success include:

* a small, high quality, and highly motivated team

* a contractual wall around the project

* an enthusiastic user department able to respond to
questions fairly quickly

* excellent database administration support

Unfavorable factors included a lack of continuity in user

involvement from BAA to system design and a BAA model that did

not capture all the business logic. (Martin, 1991)

Note that the use of CASE was assumed but was not listed as

one of the most important factors except in the context of

having a complete requirements analysis.

A variant of RAD referred to as timebox methodologies also

warrants discussion. Like RAD, a core system is built quickly

with refinements added successively; but with the timebox

methodology, a working system must be delivered at an

immovable deadline. This methodology is justified because it

is better to have a limited system functioning in a short time

than to have to wait for a comprehensive system later on.

Such limited functionality must not sacrifice quality -- the

system must be built to be changed and enhanced quickly. It

is not surprising then that timebox methodologies employ

evolutionary prototyping and code generation.

55

H. A TAILORED AND UNIVERSAL METHODOLOGY

As can be ascertained from the preceding discussions of

the various methodologies, each has its own conceptual

developmeilt framework and philosophy. Each promises the same

benefits of general applicability and overall usefulness. In

search of an megamethod, McCracken and Jackson (1981, p. 23)

states "to contend that any life cycle method, even with

variation can be applied to all systems development is either

to fly in the face of reality or to assume a life cycle so

rudimentary as to be vacuous." 6

Agresti (1986) does present a framework for a flexible

development process. Its elements are activities such as

interviewing users or prototyping a system; intermediate

products such as display menus; control points such as a

demonstration of a system's initial capabilities; and

baselines such as a set of products representing a version of

the system. The manager defines these elements for each

project which can vary from project to project and also

defines what is meant as progress for specific control. The

choice of elements is influenced by certain process drivers

such as the experience of the developer with the application

'This search for an umbrella methodology has already been
undertaken by the European Commission (EC) in an effort to not
only address differences in the techniques, definition and
natural languages across Europe but also to serve as a tool to
help the Commission to judge software development proposals.
(Johnston, 1991)

56

area and the software product; the availability and

effectiveness of software support; the interfaces involved;

the extent and level of end user involvement; the degree of

requirements understanding by the user and the analyst; and

the operational characteristics of the software. Such an

effort understandably involves more managerial involvement but

also allows flexibility.

A new acronym has entered the literature to describe a

global methodology that can handle all types of system

development situations: ASDM or the Advanced Systems

Development Methodology. Universal is defined as "covering

the entire scope of a system's development process with a

management perspective; providing detailed and comprehensive

development methods; and being applicable to all systems

development situations." (Jaakkola, 1991, p. 8)

A discussion of ASDM's requirements follows. The ASDM

must be flexible and contain a defined set of methods based on

all three approaches to software development: traditionally

structured, automated, and prototyping approaches. The proven

foundations of systems analysis and design should be retained

and supplemented by prototyping. Such iterative development

can be made possible by using automated tools that facilitate

the cyclic refinement of systems requirements and the

regeneration of working systems. The project management

component must include not only the business needs of the

system but also the central factors that relate to the success

57

of the project: end user satisfaction, senior management

participation and commitment, quality control, and risk

management. Standards must enhance the quality of the work,

not restrict it. Finally the methodology should aim to be

self-documenting and evolutionary.

Jaakkola (1991) also suggests a tailoring method to

streamline the ASDM such that it reflects the characteristics

of the system development situation and facilitates the

managerial control and execution of the project. It is also

important for the organization to fully identify the range of

its development activities. Certain projects may require a

combination of the step-by-step, automated, and iterative

approaches. For example, a data driven approach works well

when the organization supports the concept of a corporate data

model and has grouped business functions; otherwise, a

process-driven approach especially when information

requirements are not clearly defined may be necessary. The

result is a project specific methodology with its own set of

development techniques, supportive automated tools, and

standards and documentation established not externally, but by

the project team itself (Jaakkola, 1991).'

7Foresight, A CASE resident systems development
methodology claims to allow the user to customize the
methodology, or even overlay the current systems methodology
on top of Foresight. It also allows the user to create a
standard process against which to measure and manage projects.

58

III. SOFTWARE DEVELOPMENT TOOLS

A. RELATIONSHIP OF A TOOL TO ITS METHOD

It is important to distinguish between a tool or technique

used by a methodology and the methodology itself. Which comes

first? In theory, many claim that an assessment of the

methodology should occur separately from and prior to an

assessment of the tools that support the methodology.

In practical terms, though, an automated tool may provide

an enabling technology to successfully employ the methodology,

and as a result, may reduce development time, improve

communication, and improve a project's cohesion,

maintainability, and supportability. CASE tools may also

enforce a standardized development practice, enable reverse

engineering, and provide more consistency between

specification, design, and code. The justification for CASE

was built upon the need for standardized and integrated

software development methods. Often, the methodology is

packaged with the tool (although some tools do allow

customization of the methodology) with the methodology

providing the infrastructure for controlling CASE techniques.

CASE (1986) states that it is probably easier to adapt the

methodology to the tool because the methodology or life cycle

is more flexible than the tool.

59

Notwithstanding, one should avoid selecting a methodology

simply based on the tools that support the methodology;

otherwise, an organization may be stuck with a product that

does not meet the organization's goals or systems'

requirements. Therefore, it is recommended that an

organization should first focus on the methodology, then

examine the tools, and select both together. (Teledyne Brown

Engineering, 1988) In an April 1991 survey, 44% of 143

respondents chose the methodology before the tools, 38% chose

the tools first, and 14% chose both together. (Sullivan-

Trainor, 1991)

B. FOURTH GENERATION LANGUAGES

Fourth generation languages (4GL's) and techniques

represent a class of programming support tools. They allow

the programmer to represent structures at a high level of

abstraction -- at a level close to natural language -- by

eliminating algorithmic detail and machine instruction sets.

By using fourth generation languages, the programmer can

concentrate on the business functions of the application

rather than on the intricacies of coding. Complex functions

can be executed with few commands. As opposed to fifth

generation languages, 4GL's usually do not contain artificial

intelligence components such as inference engines and expert

and knowledge-based systems.

60

Fourth generation languages are also referred to as

nonprocedural languages because they specify what is being

accomplished without describing why. For example, the

nonprocedural statement "list by customer average (invoice

total)" does not include instructions on how to sort the list,

compute the average, or determine how the page should be

formatted. (Martin, 1985)

Fourth generation languages were created to alleviate the

problems associated with third generation languages (COBOL,

PL/1, ADA, etc.). They were designed to speed the application

development process, by avoiding alien syntax and mnemonics;

they were designed to make applications quick and easy to

change thereby reducing maintenance costs; they were designed

to minimize debugging; they were designed to generate error-

free code from high-level expressions based on the

requirements; and they were designed to make languages user-

friendly so that end users could do their own programming.

Fourth generation languages generally have the following

properties although they vary greatly in their power and

capabilities (Martin, 1985):

1. They are user-friendly.

2. A nonprofessional programmer can obtain results with

limited training.

3. They usually employ a database management system.

4. Nonprocedural code is used wherever possible.

5. Default assumptions are made wherever possible.

61

6. They are designed for on-line operation.

7. They enforce structured code.

8. They are easier to maintain and easier to understand
than third generation langi-ages.

9. They are designed for easy debugging.

10. They are able to produce and modify prototypes quickly

11. They usually have syntax-directed editors to edit the
input before the commands are processed.

12. They have a smaller set of commands as compared to third
generation languages.

Fourth generation languages can vary from being merely

query languages, report generators or graphics generators;

others can create complete and complex applications. It is

not surprising, then, that the major components of 4GL's for

routine applications include administrative functions for

cataloging procedures; a data specification facility to design

files or employ data previously defined; a report generator

and/or screen painter; a dialogue facility for user-computer

interaction; a rule specification capability to define

conditions or decisions; and an overall procedural facility to

specify the structure of the program (loops, conditions,

nested routines, etc.). Figure 3. 1 presents the components of

an ideal 4GL. Fourth generation languages also require an

infrastructure to carry out these functions such as multi-user

access, security and recovery features, among others.

(Martin, 1985)

62

DAT BSEDAT-BSE0 Auritmeiand-Udt Languac

*~~~~~~~~~~~ Daaud~ ae eeao utDiagumeneaton r nl~i fDt

AUTOATIONTOOL D ATA BASE eGAl-sheeticng Laogbic

is MatDibxPcitieonAuarayalyDeiedDt
0 Eletr-onicFiing ToolbaeTigr APIAIN EIINSUPR I

0 Documentati T o n WodPoesol ataNvgtion Diagrams Eio

DAAINU Men Geeraor Atio igra Edto

C Heo Ais C egenencyDiagamAEito

" aaen a el G xene SystemCEretSseor GrSpeadseetDesip tato

"Fgr 3.1-pdt PanlGneao Ida FourthdGenerationL ngagesi ofDaciit

Many ~ ~ ~ ~ S 4G' arPdpedetonthirdtato drpictinryo
encyclopedia.A Thi cmadst ayb dOmeation-Rspecificaphic

they oareodsige fo onlaatpecfic calas Toro rngso

apcatiommns.atUnlik thr geneatio languaems,4 cno

Malbx acliie 6Auomtialy erv 63Dt

be applied equally to all software applications: one selects

the language to fit the application.

Pressman (1992) states that 4GL's are limited to business

information systems applications, specifically to information

analysis and reporting that is keyed to large databases. The

time required to produce software for small and intermediate

applications may be reduced, but for large software

development efforts the time and effort in analysis, design,

and testing obscures any savings through 4GL's. Opponents to

4GL's claim that the code produced by 4GL's is inefficient and

that the maintenance of large systems developed by 4GL's is

open to question. (Pressman, 1992)

Some reasons why application programming is not done with

4GL's include: high machine resource requirements, database

incompatibility, previous costly investments in non-4GL

installed systems, and limited functionality. Fourth

generation language programs are usually limited to low-volume

inquiry and update systems.

Fourth generation languages do have distinct advantages;

they offer speed, flexibility, and ease of use. Fewer

programming instructions need to be written; programs can be

created, modified and enhanced faster; end-user training is

reduced; the complexity of developing on-line and database

inquiry programs is less; and the level of programming

expertise is less than other languages. In short, 4GL's reduce

programming time. (CASE, 1986)

64

Prototyping is often interchanged with software

development using a 4GL. CASE (1986) states that 4GL's, in

and of themselves, do not improve program design; however,

prototyping with a 4GL can support analysis, design and

programming but again they are not substitutes. These tools

need to be invoked in the context of a software development

methodology to validate design concepts: a functional

prototype is of no value if there is no data integrity or

integration.

A 4GL methodology for software development is shown in

Figure 3.2. It represents interactive application development

through prototyping with a 4GL. It consists of a requirements

gathering phase, a design strategy phase for larger projects,

and then an iterative prototyping phase. The programmer must

also perform thorough testing, document the application, and

Figure 3.2 A 4GL Methodology (Pressman, 1992, p. 31)

65

plan for transition to the system for successful

implementation. (Pressman, 1992)

C. FOCUS

FOCUS, from Information Builders Inc. (IBI), is a

versatile fourth generation language introduced in 1975 for

the IBM mainframe. Since then, FOCUS now runs on MS-DOS,

OS/2, and major LAN's as well as DEC, VAX, and UNIX platforms,

among others. FOCUS offers a non-procedural alternative to

traditional development methodologies. It is installed in

over 1000 information centers (Information Builders, Support

Service) and has over one million users -- up 25% from its

1990's base (Paul, 1992).

In one package and with a single language, FOCUS offers an

impressive range of integrated functions to include complete

database management, application development, report writing,

decision support, and communication. Moreover, FOCUS can be

used with other database formats without conversion. FOCUS

consists of a number of integrated tools and facilities. At

the heart is the database surrounded by the data dictionary

and security layers. The database is a multi-path,

hierarchial data structure managed by inherent database

management facilities. The data dictionary contains

definitions of all files and database structures. Security

can be protected at four different levels: at the file,

segment, field, and value within a field level. FOCUS also

66

supports data encryption. Figure 3.3 presents the components

of FOCUS.

The PC version, PC FOCUS, enables an intelligent

workstation to operate as a stand-alone machine or it can

communicate with the mainframe. The workstation can also

operate in a client/server architecture for a true multi-user

capability with the workstations linked to a database server.

This arrangement offers centralized data access and

concurrency control so that simultaneous access and updates of

the central database can occur. FOCUS has been proven to

replace COBOL for almost any type of business application.

Figure 3.4 presents the savings in person-months over COBOL

for a single-person 4GL project. Its weaknesses are that it

can be resource intensive for high volume, on-line transaction

processing and its command language is not as easy to use as

other languages; but others claim these weaknesses are offset

by the broad range of facilities it supports. (Martin, 1986)

FOCUS is designed for both the non-technical user as well

as the applications developer through its FOCUS TALK

technology. FOCUS TALK employs English-like commands, many

defaults, on-line help and error correction, and a consistent

syntax for its features and utilities. End users can produce

reports after tto days of training whereas it usually takes 14

days of training plus six months of experience to become a

beginner FOCUS application developer.

67

I PP Ii' RAPII

I.~ ~ I,,,%q• 1 4!
A•,ft- If;',l I 'S ,. a

I :A1 I
rreel# i

[-~(,; (('q
d'

I)aCtn)~i II'll ol 'l(I flthIle --

GnAF
ID.,, I

II) ! VS
IOMis I

OSAM 7I)ArlS No.s,~ nd rI

VSAMV Modni 204 riles
ISAM Sysltem 2000

Of 1 t)ns vS

Figure 3.3 Integrated FOCUS components (Martin, 1986, p.
147)

68

Recall that FOCUS is a nonprocedural language -- the user

does not need to know how to perform an operation, only what

the operation must do. These nonprocedural requests (such as

reports and queries) can be contained within procedural

control statements, which dictate when and under what

conditions requests can be executed, to form FOCUS executable

procedures called FOCEXECS. Hence, interactive dialogue and

internal testing of values are achieved.

Standard profile for system development
manpower in a large bank, for

8 systems of 5000 to 15000 lines of COBOL 121
(median: 45 person-months)

6

0~
0

_ 0

2 .2

0 4 5 6 7 - 8 9 10 11 12

Single-person 4GL development

Figure 3.4 Comparison of FOCUS versus COBOL for a one-
person project of moderate size (Martin, 1985, p. 81)

A group of related items of information or fields are

called segments in FOCUS. For example, the personnel

information for a student would be consider a segment. The

collected data for one or more segments constitute a FOCUS

file. For example, a student file would contain data from the

69

personnel and course segments. A Master File Description

(MFD) is used to define the complete structure and format of

the data: it contains the name of the file and the names of

all its segments. For each segment, the name, format, and

length of each field is defined (reference the MFD for the

Minor Property Accountability System in Appendix A). The

actual data itself resides in another file called a data file.

(Information Builders, User's Guide, Vol. I, 1990)

FOCUS has a powerful facility known as its join operation:

separate files can be dynamically joined at execution time (as

long as they have a common field) to create a virtual, joined

structure. This structure can also be "inverted" to minimize

the input/output associated with data retrieval. (Martin,

1986) With the join command, new views of data can be created

to satisfy different user needs while the individual

organization of the files remains simple and straight forward.

Such an alternative view is shown in Figure 3.5. "This

technique does not create additional overhead, nor does it

involve restructuring of the database. A different database

view can substantially alter the retrieval strategy for a

given query request." (Martin, 1986, p. 158)

There are several environments in FOCUS that represent

different functional areas each having their own specific

command sets. Two of them, TABLE for reports and MODIFY for

updating data are discussed along with other features of

FOCUS.

70

Figure 3.5 Alternative Views with FOCUS (IBI, User's
Manual, Vol. 1, p. 2-227)

Features for end users include (IBI, User's Guide, Vol. I,

1990):

"* The Report Writer: TABLE -- the files can be FOCUS files,
a collection of files through JOIN, or an external file;
the user can select records, perform calculations, define
special fields and create custom report formats; can
report on data from more than one file and has special
handling of records with missing data fields; report
requirements can be saved in a FOCEXEC

"* Text Editor: TED -- has special features beyond the
typical system editor; when encountering an error, puts
the cursor on the error line; has split screen facilities
such that four files can be displayed simultaneously; does
not edit ddta

"• Row-Oriented Financial Report FRL (FOCUS Financial
Reporting Language) -- spreadsheet layouts, performs
calculations and can carry totals forward for other
reports, produces financial statements

"* Data Export Interface and File Transfer--to prepare or
format output for other products

"* The Graph Generator: GRAPH -- the user can specify
grouping and sorting characteristics and control the

71

format of the graph: forms include connected point plots,

histograms, bar charts, pie charts and scatter diagrams

Features for application developers include:

"* Database Management: MODIFY -- facilities for file and
record handling facilities and validation and calculation
features; activities include collecting data, performing
validation tests, matching data against existing records,
record updates, and logging of file maintenance
activities; used to create MODIFY requests

"* Dialogue Manager -- provides control facilities for
creating MODIFY procedures that can include variable
fields and prompts for data

"* Full-Screen Data Entry Forms: FIDEL -- can use free-form
text layout with windows and scrolling features; can
protect fields and define other dynamic attributes such as
highlighting, blinking, etc.

"* Database Editor: FSCAN -- file maintenance utility to
edit FOCUS databases directly on the screen; for minor
corrections and changes; can scroll records, locate
specific fields, add and delete records, etc.

"* Database Security -- access rights which can vary from
user to user and can be assigned to a field(s) or even to
values within fields; levels of protection: no access,
read-only access, update-only access, write-only access,
read and write access.

D. COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

CASE or computer-aided software engineering is the

automation of automation systems. It is an enabling

technology for software development. CASE has evolved from a

simple tool for one phase of software development to a total

systems approach for the analysis, design, production, and

maintenance of software. For some organizations, it

represents a shift from an informal, labor intensive and

72

largely undocumented software process to a formalized,

computer-assisted paradigm. It was founded in the concepts of

structured development techniques, but unlike computer-aided

engineering it was not implemented with tried and proven

practices. (Pressman, 1992) It is a term that has been the

subject of debate, confusion, and disappointment. Is it the

answer to increasing productivity or "just another fad, more

the product of vendor hyperbole than reality?" (Burke, 1991,

p. 31)

The requirements for a CASE tool reflect the problems it

was designed to solve: to improve productivity, to improve

software quality, to improve managerial control, while being

flexible and easy to use. Surely, any system or tool must be

less of a burden than the problem it is trying to solve.

(CASE, 1986) Some other benefits claimed by CASE include

(Manley, 1990):

* Potentially speeding up the software development process

* Reduced software costs

0 Automated software development and maintenance

* Automated generation of software documentation

* Automated generation of code

* Automated error checking

* Automated project management

* Formalized and standardized software documentation

* Potentially greater control of the software development
process

73

"* Integrated tools and methodologies of software engineering

"* Software reusability

"* Improved software portability

The essential elements of CASE include (1) procedures --

a disciplined, life cycle methodology for the development of

software (Z) methods -- standard design techniques and

procedures for producing project deliverables and (3)

integrated automated tools for:

"* estimating and planning projects

"* tracking project progress

"* creating and modifying project deliverables

"* managing design information

"* reusing design and code modules

"* analyzing and verifying design

"* reviewing deliverables for quality

"* tracing system requirements through system requirements

System analysis and design should lead to code generation with

the entire process maintained by an automated methodology that

can guide the developer and enforce rigor. CASE tools aid in

problem partitioning, maintain a hierarchy of information

about the system, produce diagrams, and apply heuristics to

the specifications. (Pressman, 1992) The objective of CASE

tools is to assist in application development; the programmer

can ignore the specifics of coding and concentrate on the

74

Code generation: Tool can generate some programming Language code from analysis and design
representations.

Configuration management: Toot maintains histories of document versions and configurations of
documents.

Onin: Toot depicts the module structure of a program being designed either in text or graphicatly
in structure charts or modular block diagrams.

Documentation Sucoort: Toots that provide for the extraction and formatting of the contents of the
project database. Others provide standard reports, report generators, and templates to meet certain
standards.

Performance Analysis: TooLs that measure the complexity of software, generates static or dynamic
statistics of a program's performance or analyzes the structure of a program.

Project Management: Toot provides or reports project management information including number of
processes, atLocation of work, completion status, and in some cases, schedules, budgets, and project
dependencies.

Prototyping: Toot provides ability to develop screen or report prototypes and generate appropriate
code, or provides capabititty to rapidly develop algorithms and test the code.

Reguirements: Toots providing either text or graphic capability to generate or anaLyze requirements.

Reverse Engineering: Toot is capable of reading source code or database schema and create the
documentation and design representations necessary for enhancing and maintaining the code at the
analysis and design Level.

Simulation: Same as prototyping except it simulates the behavior of the prototyped system.

Strategic Planning: Toot is capable of creating an enterprise model or a strategic systems plan.

Testing: Toot provides the capbitity to generate test beds or test suites from the source code.
Also includes capability to assist in system integration testing in the target hardware environment.

Traceabitity of Requirements: Toot can track and report the impact of changes between documents or
trace the development of a requirement throughout the system so compliance and completeness checks
are possible.

Figure 3.6 CASE Tool Definitions (Manley, 1990, p. 22)

logic of programming versus the "housekeeping. " Some general

classes of tools and their descriptions are contained in

Figure 3.6.

This thesis will focus on integrated CASE tools -- CASE

technology that supports the entire software development life

cycle (from cradle to grave) versus tools that support either

75

the "front end" (planning, analysis, and logical design) or

"back end" (physical design and construction) of software

development. I-CASE tools concentrate on the analysis and

design phases of application development. The output from one

high-level tool is used by another tool or is used to generate

the application. As such, I-CASE tools advocate a top-down

strategy to systems development. Limitations of integrated

CASE include they cannot address every type of application,

cannot build systems for every type of hardware platform, and

cannot use every type of database, among other limitations.

To optimize functionality, the entire developmental

process must be integrated through the use of automated tools.

According to Pressman (1992) the benefits of integrated CASE

(I-CASE) include (1) the smooth interchange of information

from one method to another and from one step to the other (2)

a reduction in the effort to perform the umbrella activities

such as documentation, production, quality assurance, etc. (3)

an increase in project control through better planning,

monitoring and communication and (4) improved communication

between staff members working on the same project.

"Integration demands consistent representations of software

engineering information, standardized interfaces between

tools, a homogenous programmer interface with the tool, and an

effective approach such that I-CASE can move among various

hardware platforms and operating systems." (Pressman, 1992, p.

739)

76

The I-CASE environment combines integration mechanisms for

data, tools and the user-computer interface. Ideally,

information should be available to each tool that requires it;

the user interface should have a common look and feel; and

there should be a standardized developmental approach or

philosophy.

Data and tool integration is achieved by:

"* data exchange -- the ability to transfer information
between different tools

"* common tool access -- the developer can invoke a number of
tools in a similar manner (through pull-down menus,
windows, etc.) and can compare different representations

"* common data management -- uses a single logical database
of information; enrures proper check-in/out procedures;
access rights and version management; includes a data
merge facility and cross-project checking

"* data sharing -- can use another tools' data without
translation; usually a one vendor r ,,t

From a larger perspective, the information framework that

supports the transfer of information between tools, data, and

the user is represented in Figure 3.7. Its components consist

of the shared repository (to share the data), an object

management layer (to control the changes to the repository),

and a tools control mechanism (to coordinate the CASE tools),

and a user interface.

CASE is usually built around a project dictionary,

repository or encyclopedia that stores all the information of

the system and is implemented or accessed by some of the CASE

77

User letmerfice Inyer

h itforfare f1qa kit

I~ Ia--s °°""-rPr_, nMln, prol__.

Oblct manF ge ei! layer

- trIntg•;tion services

* Coifiguration management services

Shnrr"4 repoallory layer
* CAFi tatNt,.-';o

* AcL0e; conht,,i hjunclions

Figure 3.7 Architectural Model for an Integrated CASE Tool
Framework (Pressman, 1992, p. 745)

tools previously listed. The repository of I-CASE is usually

a relational or object-oriented database that achieves data-

to-data and data-to-tool integration. It accumulates and

maintains all application information as well as providing

communication between the tools. It performs the functions of

(Pressman, 1992):

"* data integrity -- validates entities, ensures consistency,
automatically performs "cascading" changes

"* information sharing -- between multiple tools and
developers, provides multi-user access, and locks and
unlocks objects

"* data-tool integration -- establishes a data model for
access by all tools, controls access, and performs
configuration management

"* data-data integration -- a database management system that
relates objects

"* methodology enforcement -- a set of steps -tD build the
contents of the repository

78

* documentation standardization -- for example, definitions
from the objects are standardized

CASE tools cannot be separated from the organizational

issues. The ability of an organization to absorb CASE and the

associated methodology can mean the difference between success

and failure. The size of the organization, the experience of

the staff, and the compatibility of the methodology with the

organizational environment are several factors to consider

when introducing CASE into an organization. CASE can

potentially cause more harm than good. "CASE improperly

employed will only enable you to build more quickly the same

lousy systems as before." (Burke, 1991)

From the programmers' perspective, they can no longer

fiddle with the code because all changes are made to the

model. To some, programming no longer seems to be an art but

a disciplined engineering approach. McIninch (1992) stresses

that education as to the benefits to the organization and to

the staff of introducing CASE must be stated before actual

training in order to increase the commitment to CASE. It is

critical that the staff know not only how to use the tools,

but to relate the functionality of the tool to the achievement

of specific tasks. Successful implementation of CASE,

therefore, requires excellent planning through anticipation of

problems because every aspect -- the people, methodologies,

tools, and processes are all transformed with the adoption of

CASE.

79

According to Datawation dated July 1989, the most common

reasons for the failure of CASE implementation are a staff

that does not understand methodologies, inadequate staff

training, -and using CASE without management support (Loh,

1989). 'Petersen (1991) lists some lessons learned and

recommendations that can be used for implementing CASE

successively:

1. Set time boundaries to avoid over-analysis.

2. Avoid large project teams.

3. Don't let the tools dictate the deliverables.

4. The analysts have to know the business.

5. The greatest demand is for training; don't underestimate
it. Recycle good people.

6. Know your requirements and limitations. Establish a
solid strategic plan for what you are trying to
accomplish.

7. Select pilot projects that are manageable and measure so
you can evaluate the results.

E. INFORMATION ENGINEERING FACILITY (IEF)

Texas Instrument's Information Engineering Facility (IEF)

is an integrated CASE tool that implements the information

engineering methodology. From its initial prototype in 1984

to its first commercial release in 1987, IEF has captured 22%

of the I-CASE market share worldwide and 40% of the I-CASE

market share in North America as of 1989. In 1991, Texas

Instruments (TI) had 300 accounts. (Penrod, 1992)

80

Its competitors include Anderson Consulting (Foundation),

KnowledgeWare (IEW/ADW), CGI Systems (PacBase) and Intersolv

(Excelerator). In a 1991 user poll of IEF, Anderson

Consulting, KnowledgeWare and CGI System, IEF placed first in

twelve of the nineteen categories with its highest ratings in

integration of the life cycle stages, the ability to increase

quality, and its code generation capabilities. The lowest

ratings were received in its ability to work with other

vendors' tools, support for local area networks, and the time

required for training. (Sullivan-Trainor, 1991) Another

benchmark test involving the integration of CASE tools and

fourth generation languages was completed whereby IEF was

judged against Oracle, Sapiens and other languages according

to specific criteria for development and maintenance of a

costing system. IEF scored excellent in speed of maintenance

and integration of tools, but only fair in speed of

development. (Computerworld, 1992)

TI primarily targets mainframe environments and separates

its planning, analysis and design toolsets from its

construction toolsets. Different construction toolsets can be

purchased to match a multi-vendor, multi-platform environment.

IEF supports C and COBOL code generation and PC based

development for mainframe applications. Target environments

include IBM, Digital Equipment and Fujitsu with DEC, VMS,

Tandem and UNIX platforms recently released or undergoing

testing. IEF also allows a product interface to IBM's

81

Repository Encyclopedia and has a Public Interface, a general

purpose interface for other CASE tools and report writers.

IEF is available for OS/2 on a workstation and the MVS host.

The planning, analysis and design toolsets are also

available for MS-DOS. Requirements include an IBM-compatible

80286 system supporting DOS 3.1, 640K with a recommended 64KB

expanded memory, and a 20MB hard disk. Cross generation from

OS/2 to VMS and UNIX remote targets were released in 1991.

Workstation toolsets range in price from $9400 to $23,800 and

mainframe toolsets from $100,000 to $340,000. It is worth

noting that TI uses IEF and uses IEF to develop IEF.

(Datapro, 1991)

Version 5.0 of IEF available December 1991 includes some

of the following key features: a hypertext help facility,

redesigned documentation, a graphical user interface, and

intelligent regeneration which determines which code modules

will be affected by changes to a model and automatically

regenerates those modules if required. (Texas Instruments,

1991, "Introducing IEF 5.0") IEF also supports other popular

interfaces such as Microsoft Windows and MOTIF. TI has

already shipped a Rapid Developer Starter Kit for $10,000

which includes the analysis, design, and construction toolsets

and a tutorial, but does not include the planning toolset or

full documentation.

Future trends for IEF include an ADA code generator in

1992 and a project management component as well as marketing

82

reengineering services and reusable IEF templates$ for

specific applications. The project management tool generates

a work breakdown structure task list and an estimation of

effort for a high-level data and activity model. It also

creates estimates based on the system analysis, staff

experience, project size, and user involvement and supports

what-if analyses.

IEF components include the underlying information

engineering methodology, the central encyclopedia or data

repository; and toolsets for the planning, analysis, design,

and construction phases of the IE software development life

cycle. Normal use of IEF involves using the workstation for

upper CASE activities and the mainframe for storing/receiving

centralized repository information or for generating code as

presented in Figure 3.8. Development stages are Information

Strategy Planning (ISP), Business Area Analysis (BAA),

Business System Design (BSD), Technical Design (TD), and

Construction (Const).

With IEF, the user selects the stage and a corresponding

list of relevant tools is displayed (Reference Appendix F).

The tools used with IZF are as follows:

0 Organizational Hierarchy (OHD)

8 TI has nine templates as of February 1992 to include
a time tracking system, general ledger package, project
management system, among others. The first template was a
frequent flyer program by Trans World Airlines used by
Canadian Plus.

83

"* Matrix Processor (MTX)

"* Matrix Definition (MDF)

"* Data Modeling (DM)

"* Activity Hierarchy (AHD)

"* Action Diagram (PAD)

"* Structure Chart (SC)

"* Action Block Usage (ABU)

"* Business System Definition (BSD)

"* Dialog Flow (DLG)

"* Screen Design (SD)

"* Prototyping (PT)

"* Data Structure (DSD)

Consistency checking and model reports are also available for

each stage. (Elliot, 1991) The specific advantages and

disadvantages of linking the methodology with the tools, more

detailed descriptions of the tools, and the strengths and

weaknesses of the tools themselves are discussed in Chapter V.

IEF is a method for using information as it is a set of

tools. Figure 3.9 presents the percentage of the methodology

and tool support used in each phase of IEF.

The central encyclopedia installed on the host provides a

centralized management facility and performs concurrent,

multi-level project development. It contains a knowledge base

of enterprise information such as the business' goals,

analysis and design requirements. The central encyclopedia

84

THE IEF
INTELLIGENT WORKSTATION MAINFRAME

Planning

Toolset

UPLOAD CENTRAL
~ ENCYCLOPEDIA

Analysis DOWNLOAD

Toolset

C* LOCAL
Design ENCYCLOPEDIA Interutinfalce

Const.
Toolset Code D atabaise

Generation Generation DiagToolset Toolset Testing

Figure 3.8 Information Engineering Facility (TI, BAA I
Student Guide, Unit 1, p. 19)

supports a number of administrative features including model

distribution which divides an integrated model into discrete

components; model merge which allows developers to integrate

modules that were developed independently into a single model;

version management; and model security. Various reports about

the encyclopedia can be produced including predefined reports

85

STAGE METHODOLOGY TOOL

ISP 90 10
BAA 70 30
BSD 20 80
CONST 0 100

Figure 3.9 Percentage of Methodology and Tool Support per
Stage of IEF (TI, BAA I Course, 1992)

on entities, attributes, functions, user access tracking, and

model contents, etc.

Integration is achieved at three levels: horizontally by

maintaining integrity within each stage of development and

from diagram to diagram; vertically by providing consistency

from one stage of the life cycle to the other; and cross-

enterprise by maintaining consistent definitions of data and

activities across the enterprise and at all levels of detail.

The central encyclopedia plays an important role in ensuring

cross-enterprise integration through its data sharing features

and reusable components. A uniform menu structure, symbols,

diagrams, and terminology enables communication and

integration throughout the phases. The consistent user

interface is a menu-driven graphical interface across all

workstation toolsets. Context sensitive explanations and help

are also available for menu item commands.

The conceptual model that defines the rules and

relationships directly generates the system: IEF transforms

86

the conceptual model during analysis into a physical model

during design. During construction, IEF generates 100% of the

executable code which is specific to the environment and the

database management system selected. TI reports that IEF

generates zero code defects as evidenced by a benchmark of 16

million lines of code. (Datapro, 1991)

Other features of IEF include rule-based consistency

checking to resolve incomplete data definitions and

transparent denormalization of database definitions for

optimization; and applications testing. Reverse engineering,

starting with code and generating a graphical diagram of the

data and procedures, is not supported by IEF but is supported

by TI developers.

IEF also supports what TI refers to as rapid application

development within the IE framework. Once the analyst

understands the system to be built, RAD can be employed to

build a high quality system in a relatively short time. (TI,

Rapid Development Using the IEF, 1991) As pictured in Figure

3.10, the ISP stage is omitted and if the system is new, RAD

begins with the entity relationship diagram; otherwise, RAD

begins with the results of the BAA. The concept of RAD with

IEF is not the same as RAD as it is employed by the MIS

department as explained in Chapter IV.

87

r. SUMMARY OF METHODOLOGIES AND TOOLS

Despite all the differences between methodologies, there

are commonalities. All have three phases regardless of the

application area, project size, or complexity: definition,

development, and maintenance. The definition phase

encompasses analyzing risks, project management (resources,

costs, work schedules, etc.) and requirements analysis -- to

define the information domain and functions of the

application. The development phase encompasses transferring

these requirements to representative code and includes testing

to determine any errors in function, logic, or implementation.

Maintenance is the result of change and can include correcting

errors, adaptation to the software and hardware environment,

TDDEEOMN

Figure 3.10 Rapid Application Development within the IE
Framework (TI, Rapid Development Using the IEF, 1991, p.4)

88

existing software. And "You can conduct each phase with

discipline and well-defined methods, or you can muddle through

them haphazardly, but you will perform them nevertheless."

(Pressman, 1992, p. 36)

The classical Waterfall approach is recommended for fully

specified systems; prototyping for uncertain requirements;

information engineering for relating business needs to

information; and RAD for quick projects and extensive user

involvement. Yet none of these methodologies need be

exclusive of one other. The prototyping methodology can be

included in information engineering and RAD. CASE tools can

utilize prototyping, and fourth generation languages can

utilize the business modelling concepts of information

engineering. Of course, certain tools support certain

methodologies better than others as the reader will soon

discover. Some tools impose a methodology like IEF; others

support a methodology like FOCUS.

Remember, though, that tools cannot be separated from its

organization and people. An organization must thoroughly

understand its software development process and apply the

tools at the greatest point of leverage, and must not confuse

the technology of the tool with the methodology. (Manley,

1990. p. 19) A fool with a tool is still a fool.

89

IV. BACKGROUND INFORMATION FOR THE CASE STUDY

A. MANAGEMENT INFORMATION SYSTEMS' SOFTWARE DEVELOPMENT

ENVIRONMENT

The Management Information Systems (MIS) department has an

application development group consisting of two GS-12, two GS-

11 and one GS-9/11 programmer/analysts (federal job

classification 334). Current applications support the

Registrar, the Admissions Office, the Comptroller, and to a

lesser extent the Supply department of the Naval Postgraduate

School (NPS). Future possibilities for applications include

integrating the curricular offices, travel and training,

departmental accounting and budgeting, among others.

The MIS department has used for some time, FOCUS, a fourth

generation language, by terminal emulation to an Amdahl 5995-

700A mainframe located in the School's Computer Center. Each

programmer/analyst receives a formal orientation to FOCUS

through a series of training courses offered by the vendor,

Information Builders, Inc. The application development staff

serve as both the programmer and the analyst for development

and maintenance. The quantity and complexity of the tasks, as

well as the degree of supervision differentiate the grade

levels of the staff. A typical or average system iW a multi-

user, single department application and will generally be

90

subjected to a continuing series of improvements and

enhancements after its introduction.

The environment or user community the application

developers serve represents an organization with an academic

department component, a military and civilian administrative

component, and a military student base. For example, base

operations (supply, public works, and financial and personnel

resources) are directed by military personnel with

predominantly civilian staffs. The academic component of the

School is predominantly a civilian faculty with military

students and curricular officers. The challenge, for the MIS

staff is to develop systems that will, more often than not,

outlive those in charge, and integrate the requirements.

It has been difficult to gain support for integrated,

multi-departmental, multi-user systems. The academic

departments, for example, exhibit a tendency to act

autonomously -- they would prefer to develop their own

systems and often have the technology, funding, and labor to

do so. Many departments do not have a thorough understanding

of other departments' requirements or processes even though

they use the same data and perform very similar functions.

For example, the Research Administration department performs

the same functions as the Comptroller for research funds.

There is no political incentive to integrate.

Some military directors are only interested in the short-

term versus the long term future of information systems since

91

their tours are typically only two to three years. Continued

support, commitment, and resources for projects also vary with

the turnover of senior managerial personnel. It is a source

of frustration for the application developers to design

systems that are only half-adopted by departments or are not

supported by the requesting department. The Minor Property

Accountability System, for example, is only used by some of

the departments at the School. The Property Management Branch

is not promoting it or using it to its fullest potential. MIS

can provide the tools, but not the authority to comply.

(Harr, 30 Sept. 1992)

The software development methodology that currently

exists, rapid application development using data-driven

prototyping; evolved as a natural consequence of the School's

environment and represents a realistic (versus textbook)

methodology for developing applications. Many of the software

engineering environment factors such as extensive project

management, metrics, and formal procedures present in large

organizations have little utility for such a small application

development staff. Metrics, as formally defined in the

software engineering field, are not applied to assess the

quality of the system. Additionally, there is little impetus

to trace original specifications to resulting code, since

those requirements are expected to change with time and

familiarity with the system.

92

The most important component of MIS' methodology is

employed before the application is started. Many projects

submitted to MIS are simply the "wrong things to do", reflect

distinctly parochial points of view, or just ignore the

organizational and administrative infrastructure that would be

required to support them. (Spencer, 27 June 1992)

The strategy used mn z the risk of developing systems

that are impossible to maintain and operate, and reflects the

general difficulty that NPS managers have in coping with

issues that cross the military/civilian and

academic/administrative boundaries. Strassmann (1992) defines

these risks as Risks of the First Kind: the risks of failures

from ill-chosen goals, and Risks of the Second Kind: the ill-

founded belief that actions will probably achieve the goals.

These risks can be refined to include "the effects of crucial

variables like the likelihood that the requirements can be

specified, the probability that the specification will define

an acceptable product, the frequency of reorganization, the

quickness of organizational change, and the rapidity of the

organization to anticipate and accommodate change."

(Strassmann, 1992, p. 37)

Projects are, therefore, reviewed by MIS based on the

manageable proportion of risk involved so that MIS' resources

are sufficient to handle those risks and on the likelihood

that a usable system will result from the investment of time

and resources. Once a project is reviewed and properly

93

scoped, a functional manager from the respective department

must assume responsibility as a pre-condition to acceptance by

MIS. This functional manager is the steward of the data and

to a large extent determines the application's success. MIS

developers complete detail work with the functional manager

and his/her employees -- the relationship resembling that of

a lawyer and a client. Unfortunately, with few exceptions,

functional manager are often not interested enough, too busy,

or do not have the detailed knowledge necessary to define the

processes of the department; and the employees that do know

the details have a very narrow view of larger, integrated

processes. Nevertheless, after the first introductory

meeting, the MIS developers document the purpose of the

application, the processes involved (why they are being done

and how they relate to the subject matter), and the

relationship of the functional manager to other managers with

respect to the project being developed.

To comprehensively document specific system requirements

early in the project development phase, the following quote

from McCracken and Jackson (1986, p. 24) is offered:

Systems requirements cannot ever be stated fully in
advance, not even in principle, because the user doesn't
know them in advance--not even in principle. To assert
otherwise is to ignore the fact that the development
process itself changes the user's perceptions of what is
possible, increases his insights into his own environment,
and indeed often changes that environment itself. We
suggest an analogy with the Heisenbert Uncertainty
Principle: any system development activity inevitably

94

changes the environment out of which the need f or the
system arose. System development methodology miust take
into account that the user, and his needs and environment,
change during the process.

Application developers from MIS start projects with a

brief and generalized statement of the functions required. It

is expected that these requirements will inevitably change and

that the users' information and perspectives represent a gross

approximation of what is really involved.

Because of this changing environment and the type of

applications being developed -- interactive, on-line,

managerial systems -- the developers follow a data-driven

prototyping methodology. The data-driven methodology is based

on the concept that while procedures and specific requirements

may change, data is fairly consistent and stable. Alavi

(1991) claims that designers using data modeling as a

preliminary step to prototyping require fewer iterations, and

design more efficient systems than prototyping alone because

data modeling can add structure to the task. If data modeling

is done correctly, there is less reliance on the accuracy of

user information. Moreover, a data-driven prototyping

approach that focuses on the data instead of the organization

will lend itself to future integration regardless of the

* organizational structure.

Developers proceed to investigate data and their

relationships by examining current reports and by interviewing

95

users. This step is crucial to the development of a proposed

system. It is often difficult, however, to find the right

person to answer the questions. Sometimes, a mmeeting with

the director, a supervisor, and a clerk must be established in

order to define complete relationships. In general, though,

for systems developed at the NPS, the data and their

relationships are pretty straight forward. Even if the system

requirement information is in error, it is in a form that is

relatively easy to correct.

Additional information is collected to create a working

prototype. The objective is to design a working system early

in the process that is "good enough." As a minimum, the end-

user must use it productively. It must also meet the

requirements of satisfying any integration issues involved and

the needs of other functional managers that require the data.

Often compromises are made based on the perceived utility of

the data and to whom and for what purpose it is designed to

serve.

MIS application developers use prototyping in order to

determine if they are on the "right track", to determine

unanticipated implications and interactions of the design, and

to show management and users alike that they are working on

the system (Harr, 30 Sept 1992). The prototypes used conform

to the definition of an evolving prototype: they ate actual

working systems that will evolve into the final product, they

are developed and evaluated early in the life cycle, they

96

provide a physical representation of the key parts of the

system, and they perform a subset of the functional

requirements for the entire system. There is no valid reason

to create throwaway prototypes in order to evaluate a system's

performance or to address proposed solutions because the

hardware platforms are more than adequate, and projects are

analyzed before acceptance for feasibility and commitment of

resources.

The prototype usually consists of add, change, and delete

functions and sample reports. The prototype is also tested

according to each type of user -- the database administrator,

a typical end-user of the department who frequently uses the

application, and end-users that use the application in other

departments or who have read-only access.

Disadvantages associated with prototyping can be avoided

through project controls and experience. A large proportion

of time and effort is dedicated to systems analysis so that

the right system is being developed and to prevent time and

resources from being spent on repair later on. The data and

their relationships defined in FOCUS' master file description

are reviewed by the Director before prototyping. Prototypes

usually are not delayed because they can be developed quickly

with FOCUS. Usually only one prototype is needed before final

implementation. The prototype is also validated through a

representative sample of data that reflects a full range of

expected possibilities. As the data model stabilizes, the

97

developer moves on to the next phase of prototyping which

consists of providing suitable update mechanisms and output

reports of various types.

An application however is never finished. Enhancements,

additional functions, or reports can be added or deleted, or

new procedures may require a different menu system -- the

changes are many and varied. Developers continue to improve

a system until it reaches a point that requires it to be

replaced or redesigned.

B. MINOR PROPERTY ACCOUNTABILITY SYSTEM REQUIREMENTS

The Minor Property Management Branch works directly for

the Supply Officer as part of the Military Operations

Directorate. Their staff consists of one supervisor plus

three assistants who manage plant and minor property, excess

property and recyclable paper pick-up. Control over minor

property is required by the Comptroller of the Navy and the

Naval Supply Systems Command and regulated by NAVCOMPT Manual,

Vol. 3, Chapter 6. One of the missions of the Property

Management Branch is to ensure adequate internal controls to

safeguard and account for minor property assets. The NAVCOMPT

Manual also requires each activity to formally assign a

network of responsible officers, managers and custodians of

minor property; to maintain a database of minor property by

responsible minor property officer; and to conduct a physical

inventory on a triennial basis, among other responsibilities.

98

Procedures for the acquisition, control, accountability, and

disposal of minor property and the responsibilities of the

parties involved for the Naval Postgraduate School are

contained in NAVPGSCOLINST 11016.3C dated April 1992.

minor Property is defined as property acquired for

immediate use with a cost of less than $5000 or more than

$5000 if the useful life is less than two years. As a

minimum, all office equipment, furniture, software, etc.

costing $300 to $5000 exclusive; all equipment classified or

sensitive, regardless of cost, and all equipment that is

pilferable with a cost of a least $100 but less than $5000 is

considered minor property.. (NAVPGSCOL, 1992)

In 1990, the NPS Supply Officer had an urgent requirement

to develop a database to more adequately manage minor property

in light of the upcoming, mandatory FY 91 triennial inventory.

The previous database was an undocumented, "home grown" dBase

III Plus program. The size of the database and the fact that

it was a single user, stand-alone system rendered it

impractical for continued use. As of September 1990, all

transactions were entered at one terminal with an approximate

30 - 45 day backlog.

One of the objectives of the MPA system is to allow the

departmental property custodians to enter and correct entries

to their own minor property: a multi-user system with

restricted access and procedural controls. In addition, the

system had to incorporate the approximately 15, 000 records

99

previously entered and to produce standard reports. (Boyd,

1990) MIS accepted the project and decided to implement it as

a FOCUS program on the mainframe versus a specific network

since all users in the various departments could access the

mainframe. The database manager for the MPA system is the

Property Management Branch who is responsible for maintaining

the database and related programs. Technical support for the

MPA FOCUS system is provided by the MIS department.

The Minor Property Accountability (MPA) System represents,

in part, MIS' methodology of minimizing risks. First, the

primary requirement for the system was based on completing an

upcoming triennial inventory. No attempt was made to

integrate the system with any other system such as purchasing

or plant property. The project was significantly "scoped

down" in order to pass the inspection. An integrated and

comprehensive MPA system which would serve the needs of all

users was not constructed. To do so would have been too

complex, would have taken too long, and would have involved

too many people than the School and the Property Management

staff were willing to afford.

The requirements were simplified at the request of the

Supply Officer. For example, there was no automated method to

identify components as belonging to a system; there was no

requirement to provide a life history of a piece of property

(from initial receipt to disposal); there was no requirement

to provide a tracking mechanism for a piece of property from

100

include automated information systems numbers and other

attributes for future uses of the data. From the Supply

Officer's perspective, these were acceptable ane realistic

limitations although other users may not agree. The end

result, however, was a useful, achievable, bounded, and

relatively benign project that met Navy mandated requirements

and was well suited to the skills and abilities of the

Property Management staff to operate and maintain. It also

served the purpose of helping managers account for their minor

property.

Specific essential requirements for the MPA system include

properly identifying minor property and producing standardized

reports. Per regulation, minor property information should

contain a locally assigned identification number; a

description of the item by noun name and noun modifier; its

model number, serial number, and manufacturer as appropriate;

a quantity or item count; its location; its acquisition date,

cost, and source document number; and the date of the last

inventory. These requirements were implemented by NPS by

identifying minor property with a tag number, by determining

its location with a building and room number, and by assigning

responsibility by a custodian's code. Additional fields

include an adjusted cost in order to account for price

increases or decreases to an internal system such as a

computer; a Federal Supply Classification Code (FSC) listing

to standardize categories of items; a remarks field; and an

101

action code to record the reason for deletion from a

custodian's database, be it a minor property transfer, excess

request, report of survey, or migration to plant property. A

listing of the fields and their properties are contained in

the Master File Description in Appendix A.

Other requirements included a count and adjusted cost

total of all minor property items at the School and per

department. The standard reports include:

1. A listing of all minor property sorted by department,
building, room number and tag number.

2. A total count axrd adjusted cost total of all items for
the School antL by department.

3. A listing of minor property by serial number.

4. A listing of the FSC codes and their descriptions.

The Property Management Branch has complete access to the

database and is responsible for the deletion and actions

(transfers, excess, etc.) of minor property items which are

usually confirmed with paper copies. They are also

responsible for updating the departmental custodian and FSC

listings and for maintaining standards for data entry.

The departmental custodians have access only to their data

and can only add and correct their data. Passwords are

assigned to limit access. Integrity checks are performed to

ensure that there are no duplicate minor property tag numbers,

that FSC codes and custodian's codes are correct, that

mandatory fields are entered, and that only permitted values

102

for certain fields are entered in the correct format. An

additional feature allows the user to have the FSC listing

displayed and to select the FSC code from the list.

The database also contains information about the minor

property custodians including their last name, first name,

departmental code, custodian code, and phone number. A

custodian cannot be deleted from the database until all of

his/her property has been transferred.

103

V. EVALUATION

It's now time to find ways to consistently and objectively
evaluatQ a tool's utility and appropriateness."
(Chikofsky, 1992, p. 19)

Listed are some opinions about fourth generation languages

and CASE tools. Roger Barlton, of Strategic Resources Inc,

states: "The move from 4GL tools to fully-integrated CASE has

enabled us to make the transition from prototyping into full-

blown development." (Eastwood, 1991, p.18)

Fourth-generation languages (4GL) have been used by savvy
developers for at least 10 years. In shops with an
emphasis on joint application development (JAD) and rapid
application development (RAD), 4GLs have proven to be the
tool-of choice. What we have begun to see in the 1990s is
a coupling of Case with 4GLs. (Keys, 1991, p. 38)

JMA (James Martin Associates) seems to be gunning for the
sort of applications its target users usually build with
proprietary languages such as Focus from Information
Builders Inc, as well as trying to make CASE more
palatable to a marketplace which doesn't really want to be
told it's the latest productivity panacea. (McParland,
1991, p. 14)

A. INTRODUCTION

There are many factors that work against any effort to

determine the most effective and appropriate methodology and

application development tool for a particular software

development environment. It is important to recognize these

factors before developing an investigative approach.

104

There is currently no unified body of literature on

software tool assessment nor any widely accepted systematic

approaches to evaluating a tool's utility.

That is not to say there are no credible and thorough tool
reviews.. .but they have their shortcomings: They are
often based on subjective information, at best. The
evaluation criteria often change with each report. It is
not clear that their results are repeatable. They are
sometimes written by reviewers who have not built a
coherent evaluation framework, and so are subject to
vendor or developer influence. Comparisons published by
different firms cannot themselves be compared. Many
organizations choose a tool or toolset without
establishing formal evaluation criteria or thoroughly
examining the tools. Instead, they frequently base their
decision on highly visible attributes such as
documentation or look and feel, rather than on the quality
and support of a specific method. The evaluation of a
tool's usefulness is often intimately tied to a project's
overall success. Seldom is an independent analysis
performed that separates the tool's quality from the
appropriateness of its use on the project or from the
politics surrounding the project. (Chikofsky, 1992, p.
18)

It is not surprising that CASE software tends to become

shelfware. One study showed that one year after introduction,

70% of CASE tools and techniques are never used, 25% are used

by only one group, and 5% are widely used but not to capacity.

(Kemerer, 1992, p. 23)

Another problem facing software developers is trying to

assess the benefit of a tool with respect to claims of

increased productivity and quality. First, one must know the

definitions of productivity and quality. Is productivity a

function of applied effort? Is quality determined by the

product's usefulness? To an executive, a productive system

may be one that is implemented on schedule, within budget,

105

that satisfies the users, and requires minimal on-going

maintenance. Others claim productivity is a function of both

efficiency and quality. Often quality is measured by how

closely the system conforms to the user's requirements

throughout the development process and after it is released;

or it can be assessed according to the number of defects found

in the system, which assumes there is a reliable method for

determining the number and severity of the defects.

Quality measures should take into account program

complexity, modularity, and size and should focus on the

process as well as the product. Each evaluator should

determine what is the precise relationship between the

variable being measured and the quality of the software.

Sometimes what is being measured is not quality, but rather

some manifestation of quality. Methodological or procedural

change may affect software quality. For example, defects or

bugs in a program may, more often than not, be the result of

miscommunication between the user and analyst than poor

program design. Perhaps some of the techniques to achieving

quality are the collection of correct, complete and

unambiguous requirements (if that is even possible), the

prevention of defects (instead of the removal of defects), and

a productive environment that stresses reusability.

Unfortunately, there is a lack of well-understood and

widely acceoted metric models and standardized metric

definitions especially for CASE products. Linsen 1988 states

106

that no other engineering discipline would apply methods or

tools without prior extensive experimentation (that is

accurate, repeatable, and controllable) that proves usability

and usefulness. He cites the drug approval process as an

example and proposes a CASE certification process. Metrics

used for third generation or fourth generation languages may

not apply to integrated CASE tools. Researchers have trouble

agreeing on, not only what to measure, but how to evaluate the

data that is collected. There is also an absence of robust

measures to assess the impact of CASE tools, perhaps due to

all the complicating and relevant issues involved: the tool's

applicability to a particular project, the extent of its use

and the skill level used in applying the tool. (Kemerer,

1988) A survey conducted by Loh (1989, p. 31) illustrates

that "while companies generally agreed that using CASE tools

increased productivity in all phases of the systems

development cycle, proficiency in a particular tool, the size

of the development project and the degree of tool integration

all affect the results that can be obtained." Indeed, success

may depend more on how the tools are used than on the

potential of the tools themselves. In short, the

technological issues cannot be separated from the

organizational issues.

Nevertheless, the importance of metrics is generally

recognized. As James Martin states (Information Builders,

107

Inc., Summer/Fall 1990):

Putting metrics into place is an absolutely integral part
of the CASE revolution. They can answer basic questions
like 'What's your return on investment from using this
tool?' You can't measure the project properly unless you
have metrics in place.

Perhaps the introduction of CASE tools may lend itself as a

test bed for measuring and understanding software engineering

metrics and the software development process.

However, without a standard measure, companies cannot

quantify the benefits of CASE which in turn, complicates and

lengthens the process of justifyinq and implementing their

use. Attempts by this author to quantify claims of

productivity by requesting the quantitative approach,

criteria, or measures used have resulted in subjective rather

than objective responses. James Martin (1989, p. 146) does

state that CASE tools provide a 5: 1 reduction in - total

development time and a 10:1 reduction in maintenance at one-

half the cost of design and coding as compared to a third

generation language environment. Where are the figures for

comparison against a fourth generation environment?

Statements such as "Computer aided progression from high level

overview diagrams or data models to executable code makes it

possible to increase the productivity of the systems analyst"

need to be substantiated with proof. How is the increase in

productivity achieved, what are the measures, for what type of

projects, in what type of environment, etc.? Researchers need

comprehensive data of projects of equal complexity developed

108

in the same environment with CASE and without CASE. Most

organizations do not have this luxury. It would seem that

companies who work with a less rigorous methodology, have

informal documentation, and do not adhere to strict structural

design would see improvements in software quality due to the

introduction of CASE, but that is not always true.

So how do companies justify their purchases? "Given that

it is difficult to prove scientifically that CASE tools

improve productivity and quality, their cost is being

justified on the basis of creating comparative advantage,

maintaining parity, or avoiding negative competitive

scenarios, rather than on traditional return of investment

calculations." (Forte, 1992, p. 71).

Similar efforts at evaluating methodologies or methods

have also served to highlight the difficulties associated with

the evaluation process itself. A technical report entitled

"An Approach to Evaluating Software Methods" prepared by

Teledyne Brown Engineering for the U.S. Army Communications

Electronics Command is an excellent source for enumerating the

difficulties of the evaluation process and suggests guidelines

to avoid those difficulties. The report is summarized in the

following sections.

The objective of a methodology evaluation is to develop

practical and repeatable experiments using subjective methods

to compare, contrast and evaluate the methodologies.

Therefore, the first problem is to create well-defined and

109

repeatable experiments with credible results that can be

validated. It is very difficult to claim a cause and effect

relationship between the method in question and the resulting

properties--of the software system. How can one achieve

precise control over all the other significant factors that

may effect the development process, especially the human

factors? Other factors include (Teledyne Brown Engineering,

1989, p. 4):

"* the type of application domain being addressed
"* the degree to which the user is involved in the

development effort

"* the point in time at which development takes place

"* the size, capability, experience and needs of the
development team and organization

"* the physical environment in which the development team
works

"* the automated facilities available to support development

"* the managerial procedures used or not used to oversee
development

Previous investigations typically measure the resulting

software and not the process of development. As the authors

state, "establishing a database containing information on the

emerging software production is quite different from

attempting to record information about the process used to

create that software." (Teledyne Brown Engineering, 1989,

p.3) Justifications for assumptions made, the steps taken,

and the rationale involved must be presented so that readers

110

can follow the thought process of the investigator in order to

obtain a proper perspective of the evaluation.

Another problem for evaluating methodologies results from

the nature of software development itself: most of the data

collected is subjective versus objective and can be influenced

by other factors of the software process:

"* the data can be associated with the method itself

"* a method's data can be influenced by its technical
environment

"* a method's data can be influenced by the development team

"* a method's data can be influenced by the characteristics
of the development team's organization

Other questions about subjective data arise:

"* Is it practical to use subjective judgment in evaluations
when such use is explicitly noted?

"* Given careful statements about how subjective judgments
are arrived, is it possible to retrace reasoning and
repeat experiments to confirm the results?

"* When both investigator and reviewer are fully aware of the
assumptions made, together with the rationale for the
steps taken, is the use of subjective data sufficient
grounds for rejecting the investigator's results?

Once the data is collected, how do you determine which

method is better than another or for that matter which is

best? What baseline is used and how does one establish a

measure to access relative weights or to determine rankings?

Determining fitness also complicates method evaluation

since the application, user, team resources, or the

111

organization can, and often does, change with time.

Evaluators have to decide for themselves which are the most

valuable characteristics. Criteria must also be

differentiated as to whether they can be determined by

examining the method or by studying the development process

that uses the method. For example, the fit of the method or

tool may not be dependent on the development process at all

but on the degree of programmer satisfaction. (Teledyne Brown

Engineering, 1989)

B. INVESTIGATIVE METHODOLOGY

Given the complexities of evaluating an organization's

software methodology and tool with respect to the software

development environment, the author chose to approach these

questions by focusing on a specific case study. The Minor

Property Accountability System was chosen because it

represented a bounded business area and was of limited scope

and complexity. A business area is considered to be

sufficiently bounded and constrained when (1) the accessed

data (2) the processes including their timing and coordination

(3) the business relationships with all their intricacies and

(4) the business rules and policies affected by the processes

and flows are all well known and clearly defined. (Haas,

1991) Given the same organization and the same requirements

and scope, the Minor Property Accountability System was

developed by an application developer using RAD and FOCUS, and

112

the author using IE and IEF. The author did not preview the

FOCUS MPA system first.

Several approaches and techniques were used to gather the

facts. Interviews were conducted with the MIS Director and

application developers in order to profile the organization.

Separate interviews were conducted with the application

developer who designed the FOCUS MPA system and with a product

specialist from Texas Instruments to answer questions about

IEF. A literature review was conducted to determine

appropriate measures and questions for the methodology and

tool evaluations. Other organizations were interviewed to

clarify concepts or features and to assess their opinions from

a source other than the vendor. However, most of the

evaluation was based on a "hands-on" 9 subjective evaluation

of using IE and IEF by comparing it to the present methodology

and tool, RAD and FOCUS.

The following questions were asked during the evaluation

process:

1. What is the software development environment? What is
the methodology used and what are its goals? What are the
requirements or critical success factors for the
organization with respect to the application developers and
the user community they serve? How are these factors
determined/measured? Chapter IV answers these questions.

' The author completed TI's Business Area Analysis I
course, the Rapid Development Using the IEF Tutorial, and
completed the analysis and design for the MPA system using
IEF.

113

2. What are the similarities and differences between the
methodologies? Can they be improved? Do they need to be
improved? Is the methodology followed? Does it work? Are
there advantages to an automated methodology?

3. How does FOCUS and IEF support their methodologies? How
are the tools similar/dissimilar with respect to the
methodology they support?

4. What do the tools do? How well do they perform their
function(s)? What are their advantages/disadvantages? How
do they compare to each other--what are their similarities?
Does the tool "fit" the organization? Are the differences
significant with respect to the software development
environment?

5. With respect to the case study, how do the two MPA
systems compare? Does one system do more/less than the
other or implement some features better/worse than the
other? What are the differences from the perspective of the
user?

As often as possible, specific illustrations, experiments,

or data are presented to provide the facts or proof of the

evaluation. It is understood that different readers will

interpret the evaluation remarks differently and affix their

own measures of importance depending on their application

environment and experience. However, the questions asked and

the investigative approach used can be applied to a similar

evaluation, perhaps of two different methodologies and tools.

For this study, several items were not evaluated. First,

information strategic planning (ISP) and construction of the

system were not conducted. Since the MPA system is a bounded

system, the lack of an ISP should not affect the evaluation.

Second, IEF was not being evaluated on its abilit~yto assist

multi-programmer operations or inter-model communication on a

114

distributed, shared system. Third, some of the benefits and

costs could not be measured such as maintenance productivity,

training, and cost. Obviously, the time to develop the system

could not be evaluated since no metrics exist for the FOCUS

system and a fair benchmark could not be achieved because the

author is not an experienced user of IEF. Fourth, hardware

performance was not an issue. Finally, the author could not

test the application to determine if the system operated

correctly although all of the procedures were put through

their consistency checks. Each of these items should not

affect the evaluation because the results are limited to the

analysis and design phases. Further research should be

conducted to include all phases of the methodologies and all

capabilities of the tools.

C. TOOL EVALUATION

This section evaluates IEF against FOCUS. It determines

what each tool has to offer, how well it performs its

functions, and whether what it does (or what it fails to do)

is significant with respect to the software development

environment of the MIS organization. Only analysis, which

includes data modeling and activity analysis, and design which

includes programming, screen design, and report design are

examined. The evaluation is based on the perspective of the

application developer as well as the end user.

115

The format for this section will include: (1) a

description of how a specific task is implemented, first, in

IEF and then in FOCUS followed by a discussion of what

additional features are or are not provided in one or the

other tool with respect to that task (2) a discussion of the

benefits and costs along with an evaluation of the results

with respect to its utility to the software development

environment of MIS. Obviously, every feature of the tools

cannot be examined in-depth, but the basic features have been

evaluated such that an appropriate evaluation can be made for

the purpose of the research questions involved. Although the

terminology may differ between the tools, the concepts do not.

The Minor Property Accountability System will be used as an

example whenever appropriate. Certain scenarios as to what

steps are required to make certain changes will also be

analyzed to determine the respective tool's flexibility.

1. Data Modeling

The analysis phase of software development includes

determining the data, their characteristics, and their

relationships. Data modeling will be the term used to define

these tasks.

With IEF the entity relationship diagram (ERD)

represents the logical or conceptual model of the database (a

model independent of the target operating environment) versus

the physical model of the database. From the conceptual

116

model, IEF creates the physical model and can perform certain

optimizations according to a targeted environment. Since this

operation is performed during Technical Design, it will not be

covered in this evaluation. The elements of an entity

relationship diagram can include a subject area, entity types,

entity subtypes, relationships, and attributes. An entity

type represents a class about which data is stored -- for

example, a custodian. In relational database terms, the

entity types are implemented as tables. Subject areas are

simply high-level abstractions of entities such as personnel.

Subject areas in IEF are for documentation and organizational

purposes only. They can only be named and described and have

no effect on code generation.

Partitioning can divide entities into subtypes and can

be fully enumerated (must belong to one of the subtypes) or

not fully enumerated (some entities are subtypes, some are

not). For example, a customer's nationality can be foreign or

domestic as illustrated in Figure 5.1. Nationality is

considered the classifying attribute, foreign and domestic the

classifying values, and the partitioning is fully enumerated.

An entity subtype is more restricted than an entity and has

additional common attributes and relationships. Each entity

subtype is implemented as a set of optional fields in a table

but IEF does not allow subtypes to exist as separately

connected tables. Life cycle partitioning can also-be created

which is a special type of partitioning that identifies the

117

states through which an entity can pass, for example, from

research to operation to replacement. (TI, Rapid Development

Using the IEF, 1991)

NAME
CUSTOMER NDME

PHONE NUWMUE
STATUSr CREDIT 1 ATNO

NATIONALITY VALUE OF OUTSTANOM OPO

TYPE
oovEmomUT AaENcY NAME

FOREIGN INTERESTED POuTICLAN NAME

DOESI COUNTRY CODEI M WORT LICENSE NUMBER

TA 10 NUMSE,

L STATE or SNcofRPCATION

Figure 5.1 Entity Relationship diagram with Two Subtypes
(TI, Guide to IEF, 1991, p. 28)

IEF captures many details of the entity types, most of

which remain hidden behind the graphical representation of the

entity type on the diagram. Appendix A contains the entity

relationship diagram for the MPA system created by IEF. The

details include its name, a text description, and its

properties -- the expected number of occurrences (records) of

the entity and the expected growth rate. IEF uses these

volume and activity measurements to calculate data set sizes

during physical database transformation. Transparent

118

denormalization occurs during the Technical Design phase when

IEF initially optimizes the data retrieval strategy. IEF

will, however, allow the developer to denormalize and change

the structure and processing strategy, without having to

change the logical model. It will also automatically correct

any resulting update anomalies.

IEF captures many details of an entity's attributes

(or fields). These include the name of the field, a text

description, its optionality--whether that field is absolutely

required or not, its domain (number, text, date, or time),

length, number of decimal places (for numeric attributes

only), case sensitivity (for text attributes only), and

aliases. The source category must also be selected: either

basic (the value is intrinsic to the entity and cannot be

deduced from the values of others), derived (usually

calculated from other values of attributes like extended

price), or designed (an invented attribute to overcome some

sort of business constraint or to simplify a system operation,

a purchase order number for example).

IEF also allows the specification of permitted values

for an attribute. The developer can specify discrete values

for text attributes and may include ranges of numbers for

numeric values. IEF uses these permitted values to ensure

"clean" data. The values are checked when fields are entered

from the screen, when data are written to a database, and when

data are read from a database. For each attribute with

119

permitted values, a default value may be specified. IEF will

assign the default value unless another value is explicitly

set. For derived attributes (like extended cost), a

derivation algorithm (or calculation) is specified by name

only. The algorithm itself must be created as an action block

using IEF's pseudocode language referred to as its action

diagram.

Perhaps most important, the developer must select at

least one attribute identifier (a unique key) defined as a

collection of attribute(s) and/or relationships that uniquely

identifies an entity (or record). Identifiers of entities do

not imply sequence and IEF allows specification of up to five

separate identifiers for each entity type. It is important to

understand that identifiers cannot be modified. If an

attribute that is an identifier needs to be changed, that

record (and subsequently all its relationships) must be

deleted and then recreated.

Relationships represent some kind of association

between entities. IEF captures the name of the relationship

(usually a verb), which describes the reason for joining the

source and destination entities, and illustrates the

relationship as a line with its associated text on the ERD.

Cardinality is specified by choosing "one" or "many" (one or

more). For example, property is signed for by one custodian;

a custodian can sign for many property. The property of

cardinality determines the placement of foreign keys, and in

120

the case of many to many relationships (M:N), IEF creates a

link record (or associative entity). Optionality, whether the

relationship must or is not required to exist, is specified by

choosing "always" or "sometimesm. For example, each minor

property item is always signed for by one custodian but a

custodian sometimes signs for many minor property items (there

is the possibility that the custodian does not have any minor

property).

For optional relationships, the percentage of time

that at least one pairing is likely to exist can be specified.

The number of pairings -- the minimum, maximum, and average --

can also be documented. For example, a custodian (95%) signs

for a least 1, at most 100, and on average 50 items of

property. The pairing percentage and number of pairings

detail are used for documentation purposes except for M:N

relationships whereby the detail is used to calculate data set

size during database transformation.

A relationship can also be marked as transferable --

a pairing can be moved from one entity type to another (for

example, a piece of minor property can be transferred from one

custodian to another over time). A relationship must be

marked as transferable or IEF will not allow a transfer action

to occur as stated in the action diagram. Mutually exclusive

relationship membership, whereby an entity can participate in

one and only one relationship in the mutually exclusive group,

can also be specified as a part of detailing the entity, but

121

is only used for documentation purposes. (TI, Rapid

Development Using the IEF, 1991)

The diagramming capability in IEF exhibits some

advanced options. An entity can be expanded (especially in

the case of partitioning) or contracted. A locator function

allows the user to select with a "rubberband" box a specific

area of the entire diagram. Entities can be moved and resized

with the relationships following in suit.

The consistency check of data modelling allows the

user to select a particular entity or the entire ERD. Errors

include "An entity type must have at least one attribute or

relationship," "An entity type must have an identifier,"

"Derived attributes must be associated with at most one

derivation algorithm," among others.

IEF allows changes to the ERD model but enforces

integrity when deleting. For example, to delete an attribute

from the ERD, all references to that attribute in the action

diagram(s) must first be deleted. Attribute names that are

changed, however, will be automatically reflected wherever

they are used. Significant changes to the data model such

as changing an identifier require retransformation of the

model and manual procedures to interact with the database

management system to update the data tables (Penrod, 1992).

Model reports include an entity definition report

which provides all information about the entities (one per

page); an entity definition report which provides information

122

about the parent entity types and their subtypes with or

without the attributes listed; an attribute cross reference

report which alphabetically lists the attributes' names,

associated entity type or subtype, and properties

alphabetically; and an attribute definition report which

contains all information about the attributes. The Where Used

Report is also helpful in identifying how a selected data

object (an entity type, subtype, relationship or attribute) is

being used throughout the model. Appendix A contains an

example of an entity definition report. (TI, Analysis Toolset

Guide, 1990)

In FOCUS, most of the information contained in the ERD

diagram for IEF is contained in the master file description

(Appendix A). This file can be created using FOCUS' text

editor, TED, and is named in CMS with a filetype-of MASTER.

The actual database itself has the same filename of the master

file description but with a filetype of FOCUS. Field names

are equivalent to IEF's attributes; segment names are

equivalent to entities; and files (or a file) are equivalent

to subject areas. Entity subtypes can be created in FOCUS as

unique segments whereby the additional fields for that subtype

are stored in the unique segment. Life cycle partitioning is

not directly implemented.

The identifiers or unique keys are defined by the

segment type statement. For example, segtype=S1_.means the

sequence of data are logically sequenced in a low-to-high

123

order using the first field on the segment as the sequence

key. If there was a combined key, segtype=S2 would be used.

FOCUS does not allow alternative identifiers. The field type

for some field names are identified as 'I' for index so that

other segments from other files can link to that segment.

The field names (or attributes) can be identified by

a name and forty-four character description, aliases can be

defined, and the format specified (either alphanumeric,

integer, decimal, packed, floating point decimal or date) with

certain edit options and a specified length (except for date

fields). For example, a format of D6.2 places a dollar sign

in front of a six digit numeric field with two decimal places.

Date formats can be YMD, Y, etc.

Field names can be "broken up" and defined for various

purposes (for example, the first two characters in a date

field can be defined as QTR) although the actual data for

these fields are not stored -- duplication would result. The

'define' command can also be used to create temporary fields

for computing new numerical values that are not in the data

record. These derived attributes are simply stated as

algorithms and can be defined with field names. For example,

extended price can be defined as equaling unit price *

quantity. The accept command is equivalent to IEF's permitted

values so that incoming data values can be tested. An

optional help message can be specified which will be displayed

when a value fails an "accept" test, when a value causes a

124

format error, or when a user places the cursor in that field

and uses a predefined PF help key. Edit patterns can be

defined as shown by the edit pattern for phoneno in the

segment custn, '999-9999'. With encrypt=on, all the fields of

the segment are stored in scrambled form.

As for relationships, note the hierarchial nature of

the file: the parent segments are listed first with the

children below. The relationship is stated in the 'parent'

statement which identifies the parent segment for that child.

As presented in the MFD for the MPA system in Appendix A, each

department contains one or more custodians and each custodian

has one or more minor property items. Relationships between

segments that are not one to many are defined as separate

files such as the cross reference file or can be represented

in another hierarchy and then be dynamically joined at

execution, or if joined frequently, the relationship can be

stated in the MFD. There is no utility to describe in text

the description of the relationships or mark them as

transferable, and the source and destination properties such

as usage are not documented. The FSC file is defined as a

static cross-reference file by its segment type statement of

segtype=KU or keyed unique. The filename for the cross

reference file is FSCFILE and its key is FSCCODE. Changes

made to the FSC file are reflected in all records in the minor

property segment that refers to it. (IBI, User's Manual, Vol.

I, 1990) In IEF, the FSC file was treated as another entity

125

with a one-to-one relationship with the property entity and

could have been implemented as a drop-down list box. (Penrod,

1992)

A diagram of the master file description can be

produced but manipulation of the diagram is limited. FOCUS

does have a consistency check on the master file description

highlighting the error(s) for the user. No reports beyond the

master file description itself are generated; however, a

program that produces a database dictionary can be purchased

for FOCUS.

If changes are made to the file structure, it must be

rebuilt just as the data model must be retransformed by IEF.

Minor changes to the field names may not require a rebuild.

Other changes such as deleting key fields or changing field

formats requires an equivalent "dump and reload" operation.

Database security can be implemented in FOCUS in the

master file description. Reference the MFD in Appendix A. A

database administrator can be defined that has unlimited

access to the file and its master file description, and must

be defined .o encrypt and decrypt data files. FOCUS security

is provided on a file-by-file basis in which the developer

specifies the names or passwords of FOCUS users granted access

to a file, the type of access granted to the user, and the

segments, fields, or ranges of data values restricted to the

user. For example, to restrict a user with the password

Clark52 to have read and write access when the value of the

126

deptcode is the Oceanography department (OC) the following

security statement would be used: User=Clark52, ACCESS=RW,

RESTRICT=VALUE, NAME=DEPT, VALUE=DEPTCODE EQ 'OC', $. Name

refers to the field the developer would like to restrict and

that restriction is based on the value statement. That way,

custodians can only update their own minor property records.

Access attributes are read only, write only, read and write,

and update only. An internal decision table that list the

users and their access privileges can be displayed. The other

facilities in FOCUS such as MODIFY, SCAN, and TABLE also obey

security restrictions stated in the MFD.

Other security features include encryption and

decryption which take place on the segment level; passwords

which can be set using FOCUS by the SET PASS= command or can

be set within FOCEXEC's or externally; and statistics on usage

and attempted violations to FOCUS database security. (IBI,

User's Manual, Vol. I, 1990)

A comparison between data modelling in IEF and FOCUS

is really a comparison between the ERD and the master file

description and their associated diagrams. The evaluation

criteria are based on how effective the tools implement and

convey the data objects, their relationships, and their

characteristics (attributes or field names). It must be

stated in the beginning that neither of the tools create a

better data model. Quality systems analysis creates accurate

data models.

127

Whereas the ERD represents the logical model and must

be transformed in IEF, the MFD of FOCUS represents both the

logical and physical data model. Both allow partitioning

through subtypes in IEF and through unique segments in FOCUS,

although FOCUS does not directly support life cycle

partitioning. As for describing or detailing the attributes

or field names, the differences are few. The developer with

IEF can identify an attribute as mandatory or optional, can

define a field with a time format, and select five alternative

identifiers. FOCUS provides more extensive field formats for

numeric fields such as floating point decimals. One of the

significant differences appears in the method used to define

derived attributes. In IEF, a derived attribute can be

associated with an entity only if the algorithm contains the

attributes of that entity. Otherwise, a separate action block

must be defined for that algorithm. With FOCUS, derived

fields and extractions of fields can be defined in the MFD and

can include field names from other segments, and from other

files if a static or dynamic cross-reference is established in

the MFD.

The process of entering the data model is more time

consuming in IEF as several window panels must be selected.

In FOCUS, the developer can detail a field name in one to two

lines. Moreover, the MFD serves as the documentation for the

data model; in IEF, the same information (or less) would be

printed page after page in the attribute definition report or

128

alphabetically in the attribute cross-reference report. In

IEF, most of the detailed information remains hidden; the

diagram could be greatly improved if a window similar to the

MFD was displayed after selecting an entity. The MFD diagram

does display the fields but is limited by the segment box.

See Appendix A.

Relationships are captured differently in the two

tools because FOCUS represents a hierarchial database

structure versus IEF's relational database structure.

Optional relationships and a cardinality of one to many is

assumed for parent to child segments in FOCUS and a one-to-one

relationship for cross-referenced segments. Descriptions of

the relationships, their pairing percentages, and the marking

of a relationship as transferable are not available in FOCUS.

The latter function offers the advantage of ensuring the

integrity of transfer functions when programming.

The MFD, through the detailing of the segment and

through the labels on its diagram, displays the same, if not

more, relationship information contained in the ERD. IEF

contains more descriptive information about the relationships

but most of this information is for documentation purposes.

However, the diagramming capability in IEF is far superior

because the user can interact with the model to move or expand

entities at will whereas the MFD diagram is not interactive.

From the perspective of enhanced user communication, both

129

diagrams would require similar training on how to interpret

the diagrams.

Both tools provide a check of the data model although

IEF requires a consistent data model before transformation.

Similar procedures must be followed in IEF and FOCUS to change

the data model; no automated facilities are available with IEF

to reflect the changes throughout the model except when

changing the name of an attribute. When adding or deleting

attributes or entities, they must be deleted or added manually

within the programs called FOCEXEC's in FOCUS and within the

action diagrams for IEF. IEF will not allow deletion of an

attribute from an entity until all occurrences of that

attribute are deleted. Yet IEF does not supply a utility

beyond the Where Used report to perform that function. FOCUS

developers use a search and replace utility (Harr, 1992).

One distinguishing feature that FOCUS implements in

the MFD is a security facility. IEF does not have a

complementary, inherent security feature for its functions or

data. Security in IEF is limited to the model or subset level

and is implemented as a central encyclopedia function. This

security feature is primarily limited to only the application

development staff. Security in IEF for users must be

"programmed in" to the action diagram or defined as external

action blocks for use by a security tool provided by the

implementing database manager. The separation of the IEF

model from its data will not allow data access restrictions to

130

be defined in the model, as it is in the MFD with FOCUS.

(Penrod, 1992) Similarly data encryption is not inherently

supported by IEF.

2. Activity Analysis

To understand the functions and processes of the

business and the dependencies between them, activity analysis

is performed. This analysis is independent of organizational

structure, existing information systems, and technology so the

analyst can understand the activities of the business. The

result is an activity model of the business area. Note that

it is not required by IEF to have an activity model in order

to do business system design, but it is highly recommended in

order to understand the business rules of the enterprise and

their effects on the entities involved.

It is important first to distinguish between a

function, process, and procedure. A function is a group of

business activities that support one aspect of the enterprise

such as planning. A process is a defined business activity

that represents a conceptual view of the actions required by

the business. Processes have a definite beginning and end, do

not generally change with time, and perform work or transform

data. Processes are often related to a changed entity state

such as creating an entity or significantly modifying its

attributes. Note that printing reports, inquiring on

available data, and recording minor changes to existing data

131

do not constitute processes. A process must change data, do

work and produce a meaningful result to the business usually

at a single point in time in one place. Procedures, on the

other hand, determine how a specific action is implemented and

represent the practical view. Activity is a general term

which encompasses functions, processes, and procedures. (TI,

BAA I Student Guide, 1992)

An analysis technique used by IEF is activity

decomposition. It involves progressively breaking down

business functions into smaller or lower level functions and

processes. It is a form of structured outlining and is

depicted in IEF by the process hierarchy diagram which can

show all levels of decomposition. Appendix B contains the

process hierarchy diagram for the MPA system. The goal of

activity hierarchy diagramming is to identify the lowest level

processes (often called elementary processes) of interest to

the business with unambiguous definitions on the correct level

of the hierarchy.

Building the process hierarchy diagram involves

creating the root function and describing it in text (without

including who, when, where or how), creating and detailing

subordinate functions, and creating and detailing processes.

IEF enforces the rules of activity decomposition, some while

building the diagram and others during the consistency check.

Some of these rules include "Functions may not be subordinate

132

to processes" and "The same function must not appear twice in

the same decomposition."

One important activity performed while detailing a

function or process is describing its expected effects.

Expected effects describe at a high level how the entity

type(s) may be affected by a process: the analyst can specify

whether entities will be read, created, updated or deleted by

using a "CRUD" matrix. These expected effects are based on

the business rules. For example, a custodian is deleted from

the custodian entity only after the property entity is read to

determine if the custodian is still signed for property.

Rules are enforced for processes as well during the

consistency check.

Detailing a process involves more than describing it

in text. Usage properties such as the expected frequency of

execution for a process (the number of times the business

expects a process to execute over a given time period) and the

estimated expected growth rate (the anticipated increase or

decrease in the number of executions of that process over time

as a percentage per year, month, week or day) can be

specified. The processes are also defined as elementary or

not elementary, repetitive or not repetitive, and include a

suggested mechanism for execution (batch, online, manual or

other). Processes defined as elementary are added to a list

of Process Action Diagrams which are built during business

design. (TI, Rapid Development Using the IEF, 1991)

133

IEF allows changes to the activity hierarchy by

allowing the developer to change a function to a process and

vice versa, to change the parent of a process or function, and

to delete a function or process with or without its

subordinates, among other changes including inverting the

hierarchy! .

There are three model reports for activity

decomposition: a process definition report which shows the

hierarchy of activities (functions and processes with the

option of including their view sets and properties such as the

expected effects), the process hierarchy report which is

basically a hierarchial listing of just the names of the

processes and functions with or without numbers, and the Where

Used report which shows how a selected data object is used by

the functions and processes. (TI, Analysis Toolset Guide,

1990)

Another activity analysis technique supported by IEF

is dependency analysis. Dependency is an association whereby

the first activity places data (whether an attribute, sub-

entity, or relationship pairing) in a certain state so the

second activity can execute. The objectives of dependency

analysis are to identify the sequence of processes involved,

to discover missing or superfluous processes, to identify the

data required to start a process and the data produced by a

process, to define the type of dependency, to identify the

external sources and destinations of information, to identify

134

events that trigger processes, and to verify the activity

decomposition by ensuring the processes are at the correct

level.

Dependency analysis determines the conditions needed

to execute a process. The sequence is based on the

dependencies as well as logic and timing constraints. There

are seven types of dependencies that can be represented:

sequentiali parallel, mutually exclusive, repetitive,

recursive and multi-enabling.

IEF diagrams the results of dependency analysis

through the Process Dependency Diagram (PDD). Appendix B

contains a PDD. When creating a dependency diagram, the

activity's subordinates are already displayed left to right on

the screen in the order they were presented in the activity

hierarchy diagram. Moreover, activities added to-the process

dependency diagram are automatically added to the process

hierarchy diagram.

External objects, such as a supplier, that are

considered outside of the business area can be added and

described with text. The interaction between an external

object and a process does not represent a dependency but an

information flow. Views can be selected which specify exactly

which components of the information are required or produced

by the process. Events that trigger an activity, such that

the activity could not have taken place until and unless the

event occurred, can also be represented on the process

135

dependency diagram. These events can occur at any time, such

as when a shipment arrives, or can be cyclical in nature such

as at the end of the year. Two different events may lead to

the same activity and the same event may also trigger two

different activities. IEF allows naming and describing the

event with text.

The principle role of dependency analysis is to verify

the activity decomposition into elementary processes. To

create dependencies of any type, the activities must be joined

and the dependency detailed with its name and a text

description. All sibling processes should be interdependent.

IEF allows changes to the dependency diagram such as changing

the dependency of one process to another, transferring

dependencies or events, deleting dependencies, and redrawing

the diagram, among other changes. Some consistency checks are

also performed on the dependency diagram. There are no

process dependency reports beyond the process dependency

diagram itself. (TI, Analysis Toolset, 1990)

Activity analysis is not implemented in FOCUS.

Rather, it is performed by the developer during systems

analysis and then documented. For the HIS developers, this

documentation can contain the purpose of the system, its

background history, the procedures currently implemented, the

interfaces, the problem areas, and a list of recommendations.

More complex or detailed requirements analysis documentation

can include a description of the system and data objects, the

136

internal and external processes involved, and diagrams of the

data flow. The developers perform activity decomposition and

dependency analysis but not with a structured and diagrammatic

format as in IEF. Text takes the place of diagrams and

includes all processes, external entities, and events, as

captured by IEF, and additional information as well.

For this specific tool evaluation, IEF's activity

analysis is compared to the analysis documents prepared by the

developers. In IEF, the developer can describe each of the

processes but cannot obtain a collective report of the process

descriptions. Each of the higher level process descriptions

are simply a consolidation of the lower level processes. For

simple systems, the activity hierarchy can be avoided because

it resembles the structure chart.

The CRUD matrix is an effective technique for

determining the effect of actions on other entities, but this

matrix is only used by IEF if the action diagrams are created

by expanding the expected effects. Otherwise, stereotyping as

presented in the next section achieves the same results

without activity analysis.

The process dependency diagram is an effective diagram

to summarize the processes involved, their dependencies, and

the events and external entities that trigger the processes.

However, the diagram cannot stand alone. IEF does not provide

enough information to completely describe the activities of a

business as contained in a systems analysis document. The

137

developer must go from process to process to read the short

descriptions in order to understand the activity being

modelled. IEF should include as a minimum a text file with

each dependency diagram. Moreover, the time required to

create the diagrams is extensive.

This evaluation does not mean activity analysis should

not be performed -- on the contrary! It only recommends that

activity analysis as implemented by IEF is incomplete. The

reports are difficult to read because they are basically lists

of processes and their details. Systems analysis

documentation which includes many of the business rules

achieves the same results and is more user-friendly.

For more complex systems, activity analysis may be an

effective tool for the developer to decompose the functions

involved and to understand the interdependencies between the

processes. The investment in time, however, should be weighed

against the benefit achieved by the tool. Recall that

activity analysis is not required in IEF for code generation.

For simple systems, an experienced application developer can

analyze a system, document it, and then proceed directly to

programming. °

"10 The Rapid Development Tutorial Module did not include
activity analysis. Whether it was avoided because the system
being modelled was simple or because it is not part of rapid
development for IEF was not satisfactorily confirmed by the
author.

138

3. Action Diagramming or Programing

The Process Action Diagram (PAD) in IEF is considered

the product of interaction analysis--determining the effects

that processes have on entities, attributes, and

relationships. They are IEF's high level computer programs

whereby each PAD contains the detailed process logic for

elementary processes, procedure steps, business algorithms and

derivation algorithms on which code generation is based.

Process action diagrams detail those actions needed to produce

output from input. Procedures, on the other hand, implement

or incorporate the process action diagrams and identify how

the system interacts with the user. As an analogy, the

process action diagrams are the subroutines and the procedure,

the programming logic contained in a menu. Both process and

procedure diagrams are built with the action diagramming tool

and will be discussed.

Building an action diagram consists of three basic

activities: creating views, defining the logic, and defining

the action blocks. A view is a collection of associated

attributes that are needed as input to or output from a

process or procedure. There are four groupings of views

included in every action diagram: import, export, entity and

local views. Import views provide the information the

procedure or action block requires to start execution and

those attributes marked as mandatory (as opposed to optional)

must be present. Export views provide the information that is

139

required at the end of execution. Entity action views provide

the information which the procedure or action block inspects

or manipulates during its execution. Local views are

generally used to temporarily save information during

execution. Repeating group views are created for multiple

occurrences of entities like lists. As an example, the import

view for displaying a minor property item is the property

entity with only its tag number attribute (since the tag

number is all that is required to retrieve the correct minor

property item); the export view would be the property item

with as many attributes as the developer wishes to be

displayed (and can include the FSC and custodian entities and

their respective attributes as well); and the entity view

would include all the entities referenced in order to produce

the export view. The import and export views can be

automatically created in the PAD if they were defined with the

activity hierarchy or dependency diagram. If not, PAD view

maintenance can be used to change, copy, delete and add views

to the action diagram.

The next step is to define the processing logic for

the action diagram. In order to add any action statements,

the views must have been created first. There are actually

three methods to build process logic in PAD's: by scratch, by

stereotyping, and by expanding effected effects. The last

method is interactive whereby IEF recalls the expected effects

for each process defined during activity analysis and guides

140

the developer through the available options to construct the

action statements. Unlike stereotyping, no assumptions are

made.

For basic processes, stereotyping is the preferred

method. Stereotyping will create the views, expected effects,

definition properties, and action statements automatically.

The developer only has to name the action block and then

choose which action is involved: create, read, update, delete

or list. All the PAD statements are automatically created

with the correct entity names and process logic including all

necessary relationships to ensure integrity checking. The

exit states such as property nf for property not found or

propertyae for property already exists are also automatically

created. Appendix C presents a generated PAD for updating a

minor property item. IEF performs cascade deleting unless

directed otherwise: if a record is deleted all other records

that participate in a mandatory pairing relationship are also

deleted. The developer then adds the specific action

statements or logic required to reflect the business' rules.

(TI, Design Toolset Guide, 1990)

The most striking difference between IEF and other

programming languages is that the developer is not.allowed to

type in any statements. Rather, the developer is guided

through the creation of each statement by clicking on the

appropriate next word or phrase. This feature is-known as

machine-led dialogue. In one respect, IEF presents only valid

141

choices such as the entities, attributes, views, and actions.

The types of actions (not a complete listing of all the

commands used with the actions) consist of:

"* Entity actions (read, read each, create, update, delete)
to retrieve and manipulate stored information about
entities

"• Relationship actions (associate, disassociate, transfer)
to manipulate pairings of stored entities

"* Assignment actions (set, move, exit state is, printer
terminal is, make) to assign values to attribute views

"* Repeating actions (read each, for each, while, repeat
until, for) to manipulate components of a repeating group
view--a list

"* Conditional actions (if, case) to change the flow of the
process based on some condition

"* Control actions (use, escape, next) to change the flow of
the process unconditionally

There are also text, number, date, and time

expressions such as last, max, current date, and spaces which

are used as tests in conditional statements and in set

assignments. Comments can also be added with the command

"NOTE." (TI, Rapid Development using the IEF, 1991)

IEF allows the developer to copy a PAD with

substitution whereby an entity name can be substituted for the

original entity and the action diagram will be automatically

created for the new entity. However, copy with substitution

only works with one entity type and no referenced

relationships (like create custodian).

142

Within the PAD itself, simple changes such as changing

the name of a view and complex changes such as moving,

copying, and deleting action blocks can be accomplished by

selecting the option from the menu. IEF will automatically

highlight all the statements involved for that action block;

in other words, components of an action statement cannot be

inadvertently separated from its action block. Movement

throughout the PAD is facilitated by menu options such as

bottom, find, goto, etc. or by using the mouse. Consistency

checks can also be performed on individual PAD's.

Common action blocks, those invoked by more than one

process or procedure such as algorithms, are referenced in the

PAD by the 'Set Using' or 'Use' action commands. External

action blocks which define the interface between IEF and

subroutines outside of IEF can also be created. The command

'External' informs IEF that a non-IEF-generated program will

be used to obtain the data needed for that action block's

export view(s).

Before creating the procedures that implement the

processes, a business system must be defined. Basically, this

involves naming the system and setting system defaults to

achieve standardization for the entire business system. These

system defaults include common commands; synonyms for those

commands such as 'A' for 'Add'; function key definitions;

common exit states (a message that appears after execution of

a process such as "operation successful" or "display before

143

updating"); certain display properties for fields on the

screens such as highlighting and color; and certain edit

patterns for output like YY/MM/DD.

As mentioned before, procedures are created to

implement one or more processes (process implementing

procedures) or can be created to improve the implementation of

the business system (designer-added procedures like the main

menu which calls other procedures). A procedure may also

consist of several procedure steps, with each step usually

associated with a screen in an online system, but frequently

procedures consist of only one step. (TI, Design Toolset

Guide, 1991) An example of an IEF process-implementing

procedure is minor property maintenance because create and

update processes occur.

Like processes, each procedure is associated with an

action diagram and can be automatically created through a

process called transformation. The developer starts the

transformation by naming a procedure and selecting the

elementary process or processes to be implemented from a list

of processes. This decision often depends on the needs of the

users. A procedure may implement only one process for

simplicity's sake, may implement one process over and over

again if executed frequently, or may implement several

processes. For the last implementation, the information

required by the elementary processes should be very similar

and the same set of users should perform all of the processes

144

used by the procedure. IEF continues the transformation by

ensuring all the elementary processes are consistent; by

requiring the developer to select the commands that will

invoke the selected processes; by synthesizing the procedure

action diagram by "calling" each process with the 'Case' and

'Use' statements; and by combining all the views of the

elementary processes into the views for the procedure. (TI,

Rapid Development Using the IEF, 1991)

Appendix C presents the procedure action diagram for

Minor Property Maintenance. Note that it implements several

processes based on the 'Case of Command' statement and that

the views for the procedure represent the collection of the

views for all the processes. Consistency checks can be

executed against procedures and the import and export views

will be automatically linked to the procedure's corresponding

screen.

Two related tools, the Structure Chart Tool and the

Action Block Usage Tool graphically display the action blocks

in the model. These tools can be used to refine the processes

during activity analysis and to refine the procedures during

business system design. The Structure Chart Tool displays a

diagram of the hierarchy of the actions blocks used by a

selected process, procedure, or action block whereas the

Action Block Usage Tool displays where an individual action

block is used by a process or procedure. Appendix C presents

examples of both tools.

145

The Structure Chart Tool is used to analyze action

diagrams and to represent them graphically. It eliminates the

need to chain between all the action diagrams to review the

structure. "The tranches of the structure chart represent the

paths to lower level action blocks referenced by the USE

command in the action diagram." (TI, Design Toolset Guide,

1990, pg. 18-3) The structure chart can be drawn vertically,

horizontally, or indented. All or selected levels can be

expanded or contracted and consistency checks can be performed

on the process, procedure, or action block. Action block and

view maintenance can also be performed.

The Action Block Usage Tool shows how an action block

has been referenced through the USE command by other action

blocks, processes, and procedure steps similar to an index

reference in a book. The branches of an action block usage

diagram represent the paths from each higher level action

block to the same lower level action block. (TI, Design

Toolset Guide, 1990)

In FOCUS, the system defaults are established in a

file named profile which can be used to established standards,

conditions, and resources during a FOCUS working session.

Another profile or FOCEXEC can be established for the user to

specifically run a program, set their password, etc.

In FOCUS, the general purpose text editor called TED

is used to create and modify all files used by FOCUS (except

the databases) and is equivalent to IEF's action diagramming

146

tool. TED's advanced features include moving or copying lines

of data from one window to another using its split-screen

facility, the ability to access the screen painter, and the

ability to immediate execute a FOCEXEC from within TED.

There are four environments to TED: type, edit, input,

and paint. Type provides easy-to-use commands such as add,

replace, top, etc. to edit and create files. With edit, the

developer can also access the prefix area, the six left-most

columns on the screen, to enter commands to delete a line or

move a block of text, for example. Up to four files can be

edited at the same time. Input is used to enter text without

predefining the amount of space and is primarily used to

create new files. The paint command is used to provide access

to the FOCUS Screen Painter. A FOCEXEC or executable

procedure can also be edited with TED; and by issuing the

'run' command, the FOCEXEC can be executed from within TED and

the error line, if any, will be highlighted (i.e. a testing

facility within TED).

The MODIFY facility in FOCUS is used to maintain FOCUS

databases through adding, deleting, and updating data. These

requests indicate which database to modify, the method of

reading the data, the search technique, and the actions

required. The following request, for example, adds new

employee data:

MODIFY FILE EMPLOYEE

PROMPT EMP ID LAST NAME FIRSTNAME

147

MATCH EMPID

ON MATCH REJECT

ON NOMATCH INCLUDE

DATA

The request will modify the file employee; prompt the user

for the employee's ID, last name, and first name; will search

the database according to the employee ID entered; if the ID

already exists (ON MATCH), the request is rejected; if the ID

is not in the database, the request is granted; and then the

user is prompted to enter more data. Similar requests can be

made for updating and deleting data. Appendix C presents the

FOCEXEC for updating a minor property item.

The MODIFY request can perform other tasks such as

test values for accuracy using the VALIDATE command; perform

calculations; modify incoming data fields; and define

temporary fields with the COMPUTE command. The request can

display messages using the values from the input fields with

the TYPE command; modify multiple FOCUS files in one request;

record execution statistics; and use CASE logic to branch to

other requests, among other tasks. However, like IEF, key

fields cannot be updated with MODIFY. Child segments can be

modified directly, without accessing the parent segment first,

as long as the seqment has one key field that is indexed. The

NEXT statement can be used to modify or display data in the

entire root segment, or with case logic, can display all

descending segments. The LOOKUP function can be used to

148

retrieve data values from cross-referenced files. The COMBINE

command allows modification of two or more FOCUS databases in

the same modify request by combining the logical structure of

the FOCUS files while leaving the physical structures

untouched. FOCUS permits multiple record processing by

retrieving many instances of a segment based on a key field

value, such as retrieving the pay records for each month of

the year for an employee. FOCUS contains a feature called

absolute file integrity with its associated commands COMMIT

and ROLLBACK, which safeguard the database in case of hardware

or software failure by writing to the database only when the

request executes properly. Valid CMS commands can also be

issued from within FOCUS by using the CMS prefix.

Although the MODIFY facility is used for extensive

database maintenance, FOCUS provides FSCAN (and SCAN) for

making minor changes. FSCAN displays databases as if they

were flat files on the screen and allows scrolling through the

database, locating and changing specific values, and file

editing such as adding, updating, and deleting records. To

move from one segment to another, the user must first move

from the parent segment to the child segment. All of the

children for all parents cannot be displayed -- only the

children of a particular parent. FSCAN also allows the

developer to change key fields. (IBI, User's Manual, Vol. I,

1990)

149

An evaluation of the Programming tools of IEF and

FOCUS is based on how effe,` '. ely each tool constructs

programs and process logic and facilitates data maintenance.

The TED and MODIFY facilities of FOCUS will be compared to

process and procedure action diagramming. Recall that both

processes and procedures in IEF are implemented as FOCEXEC's

in FOCUS.

The text editor, TED, of FOCUS and the action

diagramming tool of IEF perform similar functions in

constructing programs although the action diagrammer uses

machine-led dialogue. This technique is claimed to prevent

errors from occurring and assists the developer in creating

the action statement by presenting only valid choices. These

same errors would be caught by FOCUS after the fact by

"running" the FOCEXEC. IEF's machine-led dialogue may be

effective for the beginning user, but having to click on every

word, phrase, and option gets to be annoying in this author's

opinion. If IEF can determine valid choices, why not add a

text editor to FOCUS with on-line error checking? Note that

IEF will still not catch bad logic with machine-led dialogue.

To prevent syntax errors while programming in FOCUS, the

developers simply have a copy of the MFD in front of them

(Nolan, 1992). The action diagramming lines that connect the

logic and action blocks in IEF do assist in readability

especially if a programmer does not indent and use structured

programming techniques. The longer descriptive names of the

150

processes also aid in identifying the purpose of the process.

The requirement to have import and export views in

every process action diagram (PAD) in IEF is equivalent to

creating input and export screens/reports in FOCUS. Entity

and work views do not have to be specified in FOCUS since the

file only has to be named in order to include all of its

segments and field names, and absolute file integrity is

inherently incorporated.

The justification for entering views in the PAD's

stems from the concept that a process should use only the

minimum information that is required for execution. By

"starving the views", the developer has a definitive and

complete understanding of the process involved. (Penrod, 1992)

While this concept serves its purpose, the author

believes that views should be defined in the analysis phase

(which is a feature of IEF) and not implemented in the PAD.

Instead, view information required for entering and displaying

data can be defined during screen design. Granted, IEF would

lose its current PAD-to-screen view consistency (views stated

in the PAD must match those in screen design) especially if

activity analysis was not performed.

Having to add views in both the action diagram and

then collectively in the procedure, seems like unnecessary

duplication. View maintenance is not automatically generated

except during initial procedure synthesis. For example, every

time an attribute must be added to the screen, the attribute

151

must be added to the process action diagram view first. The

price for eliminating views is potentially bad screen design,

possibly too much information, and if analysis was not

performed, an incomplete and misunderstood process. The

benefit would be maintenance flexibility and more rapid

application development.

The stereotyping and copy with substitution features

of IEF have limited benefits. Stereotyping will save time

initially to create "first-cut" action diagrams, but all other

action statements added thereafter to reflect the business

rules are not saved if stereotyping is re-executed.

Unfortunately, the copy with substitution command will only

execute when one entity is involved which for moderately

complex systems, is not the case. A FOCUS developer would

simply copy the FOCEXEC and use the replace command.

Notice the differences between the two high level

programming languages as illustrated by comparing the Change

Minor Property Item FOCEXEC with the corresponding Update

Minor Property action diagram in Appendix C. Both programs

obtain input values, perform integrity checking, select the

correct occurrence, and update the database for that single

occurrence or record. Consider, for the time being, that the

screens (called crtforms) in FOCUS and the import and export

views of IEF are equivalent.

Note that the relationships or segments do not have to

be restated with FOCUS when performing integrity checking on

152

the custodian and minor property segments. The relationships

and entities must be stated again with IEF even though they

are already defined in the data model. For example, " MODIFY

file minor, MATCH tag_no" in FOCUS is equivalent to "READ

property where property tag_no is equal to import property

tag_no" in IEF.

The exit states of "already exists" and "not found" in

IEF are equivalent to FOCUS' "ON MATCH type" and "ON NOMATCH

type" commands. The action commands of create, read, update,

and list are similar to MODIFY's commands except list would be

executed as a report (a TABLE request) in FOCUS. With update

in FOCUS, there is no need to SET every attribute to its

import attribute as implemented in IEF. In FOCUS, it is

assumed that the values entered will be used to update the

data because they are defined as turnaround variables on the

screen.

A similar comparison can be made between the procedure

action diagram of Minor Property Maintenance and the FOCEXEC

that initiates the main Minor Property Maintenance Menu in

FOCUS as contained in -- pendix C. Both programs, based on the

option selected, branch to execute the appropriate function.

The most striking difference is the inclusion of all the

views, not only in the beginning of the IEF procedure itself,

but in each CASE action section as well. All imports must be

moved to exports for each CASE section in IEF. In-POCUS, the

user selects a menu option through a local variable, &opt, and

153

then branching locates the appropriate label and the

appropriate FOCEXEC is executed. Note that the use of GOTO's

can be changed to CASE logic.

There are other differences between programming in IEF

and FOCUS. Certain common CMS commands in FOCUS can be

included in the FOCEXEC's whereas all action statements

outside of IEF must be executed as external action blocks.

Because IEF is separated from the database management facility

on the targeted environment, IEF does not have an equivalent

FSCAN capability to browse the actual data. Granted, this

facility should be used with care in order to maintain data

integrity.

IEF's structure chart and action block usage

diagramming tools offer distinct benefits. The structure

chart would serve as an excellent documentation tool for the

user and the action block usage tool as well as the Where Used

Report could assist the developer in mapping program usage.

FOCUS could use these utilities.

Having a long process or procedure name (greater than

eight characters) and a description also aids the developer in

identifying its function(s). The separation of procedures and

action blocks as listed by IEF assists in organizing and

understanding the system. Unfortunately, they are listed

alphabetically instead of grouped according to their common

entity. Currently the FOCUS developers systematically name

their FOCEXEC's according to the processes they implement, but

154

no generated map as to which FOCEXEC's are called from within

other FOCEXEC's is available. The logic of the system is

instead documented by a system flow chart, matrix, and/or a

menu hierarchy as presented in Appendix D.

In conclusion, the TED of FOCUS offers flexibility and

immediate testing whereas the action diagramming tool of IEF

prevents mistakes through machine-led dialogue. Programs in

FOCUS are simpler and can include external commands and a tool

to scan the data. Action diagrams in IEF contain the minimum

information needed for that program through view maintenance.

Ironically, this requires specifying that information to a low

level of detail. The programming concepts of FOCUS and IEF

are basically the same except more lines of code are required

in IEF to achieve the same results in FOCUS. Management of

processes and procedures is superior in IEF. For constructing

programs quickly when prototyping, IEF's stereotyping feature

has the advantage. For program maintenance, FOCUS has the

advantage. This evaluation is incomplete, though, because the

interaction of dialogue or control flow and screen design are

also important to the construction of programs.

4. Dialogue Flow

When a user invokes a procedure in IEF, there is a lot

of interaction among the procedures, action diagrams, screens,

and dialogue flows. Dialogue flow transfers control and data

from one procedure to the other and will be discussed shortly.

155

First, an overview of the user's interaction and an

explanation as to how IEF's components work together is

necessary.

First, it is important to note that the action

diagrams are independent of the screen and dialogue flow. A

user starts a procedure by entering data which is then mapped

to the import view for that procedure. The appropriate action

diagram is executed and the results are mapped to the export

view for that procedure. Based on a condition set by the

action diagram, the procedure can either display a screen --

the export view is mapped to the screen -- or flow to another

procedure in which the export view is mapped to the import

,,iew for the next procedure. This follow-on procedure can be

executed immediately or another screen can be displayed in

order to obtain more data. (TI, Rapid Development Using the

IEF, 1991)

A dialogue represents the interaction between a user

and each procedure of the system and is implemented through

the use of screens. With IEF, the dialogue flow diagram is

used to represent the possible paths a user can travel through

the system via screens. Appendix D presents the Dialogue Flow

Diagram for the MPA system. Dialogue flow details the

sequence in which procedures occur, defines the data that is

passed between procedures, specifies the conditions under

which control is passed between procedures, and defines the

156

function keys used to invoke the commands used in the

procedure.

Two types of dialogue flow can occur: a transfer, in

which control and optionally data is passed from one procedure

to another; or a link which is the same as a transfer, except

that control and data may be passed to the source when the

destination procedure is complete. An example of a link

dialogue would involve obtaining information about a customer

in order to establish an order, performing a credit check, and

then continuing to establish the order without any original

data loss.

Each link must have a defined 'Flows on' exit state

which represents the. condition necessary for the flow to take

place as well as a 'Returns on' exit state which causes

control to be returned to the source procedure. No explicit

commands are necessary for accepting and displaying screens.

Commands and function keys can also be associated with

dialogue flow. For example, the exit state 'Go to FSC

Maintenance', the command FSC and its synonym 'F', and the

function key F6 all can execute the same dialogue flow to FSC

Maintenance. The developer must determine whether the

procedure should be displayed first in order for the user to

input more data, or executed first such as when displaying

lists. The developer can also specify what data should be

passed by selecting the appropriate view. Flows can also be

defined between IEF and non-IEF transactions through action

157

diagram statements but cannot be diagrammed. Consistency

checks can be performed on the dialogue flows. (TI, Rapid

Development Using the IEF, 1991)

Some of the model reports generated during business

system design include a command list report that lists all

commands and. synonyms defined for the business system; an exit

states list report which lists the exit states and their

corresponding messages; a procedure definition report that

contains a list of selected procedures, their descriptions,

their procedure steps, processes implemented, and name of the

corresponding business system; the procedure step definition

report which contains more information such as the procedure

step's dialogue flow properties and view sets; and the where

used report which can be used to determine how an exit state

or other selected object is being used by the procedure steps.

(TI, Design Toolset Guide, 1990) Appendix D contains an

example of the procedure definition report.

IEF includes a prototyping feature that enables the

developer to demonstrate online screen dialogue flow without

having to build the action diagrams. This technique can

verify the user's requirements. The order and the content of

the screens can be reviewed but no data can be entered,

interpreted, transferred, or simulated on the screen. All the

procedures, screens, dialogue flows, and function keys must be

defined to use prototyping. (TI, Design Toolset Guide, 1990)

Testing can be performed at the action diagram level

158

interactively but not while constructing the action diagram

itself. The code must first be generated. With 'action block

call trace on', the developer is presented with a list of the

action blocks called and the calling sequence -- which

statement number in the process or procedure was the action

block called from or from which tool. Figure 5.2 presents a

sample action block trace screen. The developer can watch the

execution of an action diagram and step through each of the

statements, inspect and modify the views, and change the

screen display, as well as test data. Since testing is

contained in the Construction toolset which was not purchased,

the author could not evaluate testing. (TI, Rapid Development

Using the IEF, 1991)

In FOCUS, the Dialogue Manager is used to build,

manage, and control its executable procedures, the FOCEXEC's.

All requests can be written using the TED editor in a IOCEXEC

Action Block Name At Stmt #

Customer Maintenance Dialog Mgr
Add Customer 0000000002

Entering ---- > Veeify_CustomerCredit 0000000024

Figure 5.2 Example of an Action Block Call Trace Screen (TI,
Rapid Development Using the IEF, p. 208)

159

and executed by typing 'ex' followed by the filename.

Dialogue Manager control statements (such as exit, goto, if,

prompt, read, etc.) refine the requests and are executed

first. Regular FOCUS commands are stacked and are executed

only by the -run statement. Figure 5.3 presents the sequence

of FOCEXEC processing.

MFOCEXEC

Figure~~ 5.3XE Sceai3iga fFCXCPoesn II

PrU'esson Terminal
Resolve (Enter Vaues)

Variables

4FOCSTACK

COMMAND
PROCESSOR

(Executes FOCSTACK)

Figure 5. 3 Schematic Diagram of FOCEXEC Processing (IBI,
User's Manual, Vol. 1, 1990, p. 6-10)

The Dialogue Manager also allows interactive variable

substitution whereby values for the variables, both global and

local, can be supplied during execution or within the FOCEXEC

160

itself, or from prompts, screens, windows, or menus. The

variable can refer to a FOCUS command (such as &option for

print or count) or a particular field (such as &city). For

system and statistical variables such as the date or number of

duplicates, the system automatically supplies them when

requested. If the system requires a variable value and it has

not been supplied, the system will prompt the user for that

value. The values supplied during prompting can be tested and

based on the results, procedures can be branched to the

appropriate section of the FOCEXEC according to that

processing need. The EX or INCLUDE command can also be

processed from within a FOCEXEC to incorporate multiple

FOCEXEC's.

The Dialogue Manager allows control of the flow and

timing of a FOCEXEC's execution through the RUN, EXIT, and

QUIT statements. Sections can be processed in any particular

sequence and tests can be performed with the results used in

subsequent sections or in other FOCEXEC's. Testing values and

branching are constructed using arithmetic and logical

operators with FOCUS' IF and GOTO commands whereby control can

be passed to a user-defined label. Operating control

statements, external files, and a library of useful

subroutines from FOCUS can also be called. Dialogue Manager

and FOCUS commands can be displayed as they are executed in

order to test and debug the FOCEXEC's, or if required, only

the control logic provided by the Dialogue Manager commands

161

can be tested by excluding the FOCUS commands. (IBI, User's

Manual, Vol. I, 1990)

The evaluation criteria for evaluating dialogue flows

is based on how effective the tool conveys and implements flow

from one procedure to the next. It is very important that

this flow be managed and implemented in such a way that the

developer can follow its logic intelligently.

The most obvious difference between IEF and FOCUS is

that FOCUS does not separate its dialogue flow from its

FOCEXEC's. Dialogue flow in FOCUS is accomplished by using

conditional logic like IF and CASE statements and by executing

FOCEXEC's within another. As shown in the main FOCEXEC for

the MPA system in Appendix C, the Reports Menu can be

displayed by selecting option 'R ' from the main menu. In

FOCUS, dialogue flow between procedures is illustrated with a

menu hierarchy chart or system flow chart as contained in

Appendix D.

In IEF, this FOCEXEC would be designed as two

procedures: one for the main menu and one for the reports

menu, with a corresponding procedure action diagram, screen,

and flow defined. Any other procedure such as Minor Property

Maintenance that used the Reports procedure would also have a

dialogue flow established. These flows are presented as a

Dialogue Flow Diagram as shown in Appendix D. This tool is a

unique way of showing screen to screen flow but can be

difficult to read with many lines and procedures. Perhaps a

162

procedure structure chart would be more appropriate and more

user-friendly.

Dialogue flow as implemented in IEF has its

advantages. If a system is packaged as two or more

executables, dialogue flow including the passing of data can

be transferred from one executable to the other (Penrod,

1992). Commands, function keys, and exit states can trigger

flow from one procedure to the other.

However, the effort required to define and manage the

dialogue flow raises doubt as to its utility for single

executable and relatively simple systems. For example, if a

developer defines a certain exit state (like FSC not found) to

trigger another procedure (like List FSC's), the developer

must make certain that each time that exit state is

encountered in the source procedure that defined dialogue flow

should occur. In FOCUS, if another procedure needed to be

executed, an 'ex' command would simply be used. Furthermore,

rarely would a procedure be executed by a command, function

key, and an exit state.

Sometimes processes like List FSC's must be "promoted"

to a procedure to establish dialogue flow. This type of

procedure is referred to as a designer-added procedure. Once

a procedure, it cannot not be used like a process. For

example, the Report Procedure could not have a 'Use List FSC'

statement; instead a dialogue flow must be defined between the

163

Report Procedure and the List FSC procedure. Processes,

however, can be invoked by many procedures.

FOCUS ignores this distinction as procedures and

processes are both implemented as FOCEXEC's. FOCUS also

allows the developer to set global and local variables; only

local variables can be established in IEF and they are usually

implemented as work attributes (Penrod, 1992).

To display the details of the dialogue flow, the

developer must laboriously select a series of windows and

menus similar to displaying the details of the ERD. A more

concise method of displaying the dialogue flow is needed

because the documentation is lengthy and difficult to read as

illustrated in Appendix D.

The prototyping feature in IEF is really a misnomer.

Only the screen flow can be verified; no data can be entered.

Prototyping in the RAD context is actually action diagramming

and testing in IEF.

Therefore, the extra work required to detail the

dialogue flows in IEF seems to complicate rather than simplify

procedural flow. The Dialogue Flow diagram while helpful can

just as easily be documented as a system flow chart or matrix.

Nevertheless, dialogue flow is managed better in IEF. There

is no complimentary tool, diagram, or management mechanism in

FOCUS. Intelligent dialogue flow and the passing of data must

be programmed by the FOCUS developers and then documented.

164

5. Screen/Report Design

The objectives of IEF's screen design are to

standardize the screens across the business system, and to

design the screen in such a way that the user finds the screen

flow clear and easy to follow. In IEF, screens are only

associated with one procedure or procedure step and are

initially named after the procedure or procedure step they

implement. The Screen Design Tool is used to create templates

as well as screens. Templates are usually sections of a

screen that can be used by many other screens across a

business system in order to establish standardization and

consistency for the user interface. Screens are the user's

view of the system and provide both data to the procedure's

import view and data from the export view. Screens can also

be accessed from the dialogue flow diagram or act-ion diagram

by chaining.

Screens can be created automatically or step by step.

The layout feature in screen design automatically designs a

screen based on the import and export views and initial screen

defaults defined for the business system. The layout feature

also gives the developer the option of using a template(s).

Templates and screens may contain fields, which are

the attributes of the import and export data views; literals

which is simply text; special fields (which can be supplied by

IEF that are not derived from the business system but are

introduced for a specific purpose like the date and time); and

165

prompts which are the labels for the fields and special

fields. Screens can be customized by specifying the location

and characteristics of the attributes such as their import or

export data view, their display length, the number of decimal

points for numeric attributes, whether the attributes are

hidden or not, their edit patterns such as XXX-XX-XXXX for a

social security number, their video display properties (color,

protected, intensity, highlight, justification, fill

characters, etc.), their prompts if applicable, the error

video display properties (to highlight a field in error if not

a permitted value), and their help identifiers. This last

characteristic is used to integrate an attribute with a

database management system's help facility which would link

that identifier with a help description; IEF provides the

"hooks" but not the facility (Penrod, 1992). Prompt names

are assigned to fields so they are consistent across screens.

Special fields include a PF key line which reserves an area of

the screen in order to display the function keys and their

associative commands, a system error message line, a command

area for the user to input the appropriate command, the

current date and time, and scroll bar messages such line xx of

xx lines, among others. Appendix E presents the screen for

Minor Property Maintenance.

Repeating and nested repeating groups or lists can

also be displayed. Repeating group properties can be defined

to allow scrolling, to prevent the updating or the addition of

166

data to the screen, and to determine if an occurrence (or

record) on the list should be displayed upon returning from

the link, or if the original screen should be re-displayed.

Appendix E contains a screen with a repeating group view and

a selection work attribute which is used to specify the

action, such as select, to be performed on the occurrence.

Commands can be assigned to function keys for a specific

screen so that the appropriate action block is executed. For

example, F6 will initiate the List FSC action block so the

user can obtain and select the appropriate FSC from the list.

Moving, copying, centering, and deleting fields is

easily accomplished by selecting the option and then

"rubberbanding" the field. When deleting fields from the

template, the deletion applies across all screens that use

that template. The Screen Design Tool also has a display

option which displays the screen as it appears to the user; a

consistency check for the screen; and a 'Used In' option to

determine which screens are using which template(s). (TI,

Rapid Development Using the IEF, 1991)

Screen design is performed in FOCUS by the FOCUS

Interactive Data Entry Language (FIDEL) and can be used with

both MODIFY and the Dialogue Manager. Alternatively, the

developer can use the FOCUS Screen Painter to interactively

build and view the screen online and automatically create the

FIDEL code. A screen is created by using the CRTFORM or -
CRTFORM command of Dialogue Manager which both invoke FIDEL.

167

FIDEL is frequently used with the MODIFY facility for setting

up screens for database maintenance and with the Dialogue

Manager primarily when variables need to be entered.

The developer can specify three types of fields on the

screen: input, display only, and "turnaround" (both display

and update). Display values are considered protected. PF key

controls and cursor positioning can be set a well as the

screen attributes such as highlighting and color. Labels,

attributes, and field formats are part of the definition of a

particular field. For example, -"<T.HIGH.&CITY/7" refers to

a highlighted field variable called city with a length of 7

that can be displayed and updated.

Multiple forms can be displayed on the screen as can

multiple occurrences in order to update many values at once

rather than one at a time. The screen will handle several

errors such as a format errors, for example, when entering

non-numeric data for a numeric field; validation errors when

the input values fails the validate test coded in MODIFY;

NOMATCH errors when the data entered did not match a record in

the file; DUPLICATE errors when the record already exists; and

ACCEPT errors when the input value failed the ACCEPT test. To

capture all of the data on the screen, the input values can

even be logged to a file.

From within a FOCEXEC that contains a CRTFORM, the

PAINT command will execute the Screen Painter. The FOCUS

Screen Painter can be used to design a full-screen layout by

168

placing literal text and areas for fields on the screen in any

position. The field areas are then assigned to database or

computed fields by typing in the field name and selecting the

screen attributes. Like IEF, the screen can also be viewed as

it appears to the user from within the Screen Painter or

within TED. FOCUS will automatically code the CRTFORM and can

generate a CRTFORM that contains all the fields in the master

file description, similar to the layout function in IEF.

(IBI, User's Manual, Vol. I, 1990)

A screen or crtform that requires specific data input

for a procedure is usually incorporated into the FOCEXEC that

contains the logic, unlike IEF, which has a separate screen

design facility to manage the screens. The main menus in

FOCUS, however, may be consolidated into one FOCEXEC.

Appendix C presents the MPA Maintenance Menu screen in which

the user selects a menu option, and the appropriate FOCEXEC,

located as a separate file, is executed.

IEF does not have a report writer. An export view

with a repeating group can be used to display a list of

records and then printed or saved to a file for later

printing. FOCUS, on the other hand, has a report facility

called TABLE. A report request consists of the key word TABLE

followed by the name of the file; a command verb such as

print, list, count or sum; the field names; any calculations

with the COMPUTE and DEFINE expressions; and any modifiers

that control the selection, sorting and formatting of the

169

data. When entering TABLE requests, online error correction

and help are automatically performed.

FOCUS also has a facility called Table Talk, primarily

designed for the end user, in which table requests can be

built by selecting from separate windows the file to be used,

the sort criteria, etc. It "walks" the user through the

request similar to machine-led dialogue in IEF. Any adhoc

requests not written into the system can easily be executed by

the user, instead of the developer, with Table Talk.

Using TABLE, data can be displayed by groups, sub-

totaled, ranked, counted, or tested before or after execution,

as well as displayed in many other display formats that are

too exhaustive to list. Instead, as an example, total sales

within a city, within a state, and compared to total overall

sales can be executed with one sentence. The edit function

can be used to convert fields or to extract characters from an

alphanumeric string, or to insert characters to form a new

variable. FOCUS will automatically format reports but these

defaults can be overridden in order to customize a report.

The user can also select whether records with missing values

and their children should be printed or not.

A table request can include fields from other segments

in the file but they must be stated in a top-bottom path.

FOCUS also provides the JOIN and MATCH commands to join

multiple files for reporting purposes. Even the retrieval

process can be changed by requesting an "alternative view" of

170

the database by specifying which field name should be the

root. An especially wide report can be divided into panels so

that each panel can fit on the screen with scrolling in all

directions. Finally FOCUS provides a library of subroutines

which can be "called" on to execute any number of functions

and utilities, especially numeric functions.

To evaluate screen and report design requires

determining how effectively the tool builds and presents

screens to the user and how the tool integrates the screens

and reports with the programs. IEF has its own separate

screen management facility and allows the use of templates.

In FOCUS, the developers simply copy a standard CRTFORM as

their template and modify it accordingly. The screens in

FOCUS, except for the main menus, are incorporated into the

FOCEXEC with the programming logic. They are usually created

in the beginning of the program so the user can enter key

fields to retrieve the correct record, and then another screen

or report is displayed for additional data input or for

informational purposes respectively. The FOCEXEC for updating

minor property contained in Appendix C is an example of

incorporating forms into a FOCEXEC.

IEF implements one screen for all functions (create,

display, delete and update) and uses the same screen for

importing and exporting data. As such, IEF assumes the user

knows what key fields to enter for each type of action.

Screens cannot be associated with processes, only with

171

procedures. Therefore, if a process such as adding a minor

property item required its own screen, for whatever reason,

the process has to be "promoted" to a procedure and the

corresponding dialogue flow defined. Unfortunately, some of

the processes may use the procedure screen and others may not.

For example, each report or list is usually defined as a

procedure since the export screen is not the same as the

import screen. This requirement, to create a procedure from

a process in order to customize a screen for a process,

creates more work than necessary especially when the dialogue

flow must also be defined. IEF could create a similar screen

management facility for screens of processes similar to its

screen facility for procedures. FOCUS allows the creation of

screens whenever and wherever they are needed.

The separation of the screens from the procedure

action diagrams does allow management of the screens but

compared to process and procedure management, screen

management is certainly not as important to the developer. In

IEF the screens are logically connected to the procedure

action diagrams through views: all import, export and local

views of the procedure are automatically mapped to the

procedure screen. For this reason, no extraneous attributes

are presented on the screen. However, when performing screen

maintenance such as adding an attribute, the developer must

first return to the PAD and add the attribute to the

appropriate view before selecting it during screen design.

172

In FOCUS, as long as the correct file is accessed, all

fields from all segments can be added and deleted from a

screen. No checking as to whether certain fields should be

included or not is performed; it is assumed that the FOCUS

developer knows the logic of the FOCEXEC when designing the

screen. It appears IEF includes this logical check with the

PAD to prevent bad screen design (Penrod, 1992). The author

gives the developers more credit. In practice, FOCUS

developers usually use TED to create their CRTFORM's and then

use the PAINT command to view how the screen would appear to

the user (Harr, 1992).

Both tools can automatically layout a screen although

IEF's screen painter is superior. It is more user-friendly,

can manipulate fields, literals, etc. with ease, and the

developer can build and customize screens quicker than in

One of the major differences between IEF and FOCUS

appears in the reporting facility. IEF does not include an

inherent reporting facility, except for repeating groups on

screens; instead it relies on the implemented database

management system or a third-party product for its reporting

function. This reasoning is based, in part, on the fact that

IEF is usually installed in large organizations that already

have extensive reporting techniques. Since the logical model

is separated from the actual data, end user interaction,

similar to creating adhoc reports as implemented in FOCUS with

173

Table Talk, is not available in IEF. With respect to offering

a totally integrated and comprehensive product and with

respect to implementing IEF for a new or small organization,

the lack of a reporting capability is a major deficiency. The

same can be stated for IEF's lack of numeric functions or a

library of commonly-used action blocks. There is no count,

sum, subtotal, or total commands! The IEF developer must code

the calculations as action blocks. Figures 5.4 and 5.5

present the difference between IEF and FOCUS for a simple

count operation. Finally, the screen displays in IEF are

limited to the width of the screen whereas in FOCUS, panelling

from right to left will allow extra wide screen displays.

TABLE FILE MINOR
CNT.TAGNO IN 40

Figure 5.4 Count Function in FOCUS

6. Documentation, Training, and Technical Support

IEF's documentation consists of an analysis and design

toolset guide. These guides provide a short introduction of

each tool and then step-by-step instructions on how to access

the tools and perform the desired function. It does not

provide the underlying concepts or integration features as

presented in the IEF development tutorial. Even the examples

in the "Rapid Development Using the IEF" guide did not

174

CALCULATENUMBEROFPROPERTY
IMPORTS:

Entity view import custodian (Mandatory)
custcode (Mandatory)

EXPORTS:
Entity view export custodian
number of_property

LOCALS:
ENTITY ACTIONS:

Entity view property
number

READ EACH property
WHERE DESIRED property is signed for by

import custodian
SET export custodian numberofjproperty

TO export
custodian number of property + 1

Figure 5.5 Count Function in IEF

correspond with the tutorial exercise." However, the

tutorial exercise was most instructive and an excellent

training tool. What IEF needs to publish is an application

developer guide to IEF that includes the concepts, tips, and

techniques of constructing effective IEF models. FOCUS' users

manuals, Volumes I and II, are quite user-friendly and

helpful. The manuals thoroughly explain the commands with

ample diagrams and examples, many of which are explained line

by line.

IEF assumes that at least one person from the

organization attend its training courses for all the toolsets

purchased. To learn the entire tool, IEF's FasTrack program

11 The guide and tutorial exercise is still in beta
development as of February 1991.

175

which requires a minimum training period of 21 days at a rate

of $500 a day ($10,500 total) is recommended (TI, Education

Schedule, 1992). Whereas large organizations may be able to

afford this cost, small organizations may not. To really

understand the tool, the training courses are essential. Many

sites obtain information engineering methodology training in

addition to IEF training, and implement just-in-time training

so they learn the appropriate tool prior to developing their

own system. (McGrail, 1992) Often, TI on-site consultants

are contracted for initial assistance. Otherwise, the users

are referred to a product specialist or their account

representative for help. IEF's hotline support is to be

utilized for technical problems and fatal errors. FOCUS'

hotline support, on the other hand, fields basic questions but

will not, understandably, program the user's FOCEXEC's.

D. METHODOLOGY AND TOOL SUPPORT FOR THE METHODOLOGY

EVALUATION

To evaluate the two methodologies requires not only

analyzing the methodologies themselves, but also analyzing how

the tool supports the methodology and the tool's "fit" with

the software environment. The advantages claimed of CASE

tools such as methodology integration, enforcement,

standardization, and other qualities are analyzed to determine

if the claims are true for IEF. The costs and benefits are

then analyzed against the current methodology and software

176

development environment to determine whether the introduction

of a CASE tool is worth it.

James Martin states that employing RAD implies using a

CASE tool. But is a CASE tool really necessary? Can a fourth

generation language accomplish RAD better? Or is information

engineering a more suitable methodology?

Information engineering (IE) is defined as "the

application of an integrated set of formal techniques for the

planning, analysis, design, and construction of information

systems" (Martin, 1991, p. 1). With respect to the analysis

and design phases, IE and rapid application development (RAD)

as employed by MIS are very similar. As mentioned before,

James Martin included RAD as an alternative pathway through

the IE cycle. Both methodologies perform data modelling,

systems analysis, and design. Each constructs executable

systems by using a high-level programming language with

integrated control, processing logic, and screen/report

design. True, RAD usually employs smaller teams, encourages

active user involvement, has shorter completion times, and

emphasizes quick prototyping. But the concepts of IE and

RAD, without any reference to the tools that support the

methodologies, are practically the same. The differences lie

in the implementation, integration, and enforcement of the

methodologies.

IE and IEF go hand-in-hand. IEF was designed to enforce

a single methodology. This strategy is immediately apparent

177

because the stages of IE are listed as menu choices on the

second screen of IEF. There are tools that support each of

the phases, and these tools can be accessed from one phase or

another or from one tool to another through chaining. For

example, from the PAD screen the developer can chain to screen

design or dialogue flow. Information entered with one tool is

logically linked to the other tools: the information in the

data model is used to create the views and the processing

logic in the PAD, the views are incorporated into the screens,

the processes can be used to create the PAD's, and the reports

are in sync with the model. More importantly, all the

information contained in each of the phases is incorporated

into one model.

This integration enforces a sequence to application

development with IEF. The data model must exist before

creating process action diagrams; views must exist before

logic can be added to the action diagrams; views must exist

before screens with attributes can be created; a business

system must be defined before procedures can be created; and

procedures must exist before detailing the dialogue flow. IEF

even includes, in the toolset documentation, a build action

diagram and create views activity hierarchy (flow chart) to

assist the developer. This integration implies a data model

to process action diagramming to business system definition to

procedure creation to screen design to dialogue flow sequence,

at least initially. Except for situations where this sequence

178

is enforced, the developer still has the flexibility to chain

from one tool to the other ignoring the recommended sequence.

Enforcement also occurs when adding or deleting items.

For example, an attribute cannot be deleted from the ERD until

that attribute is deleted from all PAD's; a view cannot be

deleting from a PAD if the processing logic refers to that

view; and a process cannot be deleted until it is deleted from

all procedures that use that process.

Consistency checks also enforce the methodology by

providing the "green light" before preceding to the next

stage. The model must be consistent before transformation and

before generating code. Otherwise, the developer can still

work from tool to tool or from phase to phase even if errors

occur. Consistency checks can be performed at the toolset,

phase, or model level so the developer can incrementally check

his/her work. These errors are further classified as fatal

errors which usually require IEF technical support; errors

which indicate a condition that must be corrected before code

generation; severe warnings which indicate conditions that

will cause errors during system implementation; and warnings

which indicate conditions that should be corrected but will

not interfere with future work. IEF als9 enforces

standardization through common menu screens and options

(detail, check, chain), through common diagramming

manipulation techniques (locator, expand, contract), and

through business system defaults and screen templates.

179

The RAD methodology as employed by MIS consists of systems

analysis and data-driven prototyping. The methodology is

enforced by the completion of required feasibility and system

analysis documentation and by the construction of an evolving

prototype. With the exception of a review of the master file

description, the developers are left to their own skills and

techniques to design the system. Some standards are enforced:

screens are built with the same format within a system and

often across systems; FOCEXEC's are constructed following

structured programming techniques; and FOCEXEC's and reports

are named according to a functional schema (Nolan, 1992). A

user's guide and database manager's guide is required but no

standard format is followed (Harr, 1992).

FOCUS supports the RAD methodology by providing the data

modeling, design (screen and report), programming, and

database management facilities. Specifically, these are the

MFD, TED, Dialogue Manager, MODIFY, FIDEL and Screen Painter,

TABLE, and FSCAN facilities. FOCUS never claimed to be a

comprehensive integrated CASE tool; it is simply a fourth

generation programming language. Nevertheless, integration is

achieved with the tools because screen design, dialogue flow,

database management, and report requests can all be

incorporated in one FOCEXEC. Integration is not supported

between analysis and design or with the documentation of the

system. Prototyping in RAD is easily accomplished with FOCUS:

sample screens and reports can be developed very quickly and

180

sample screens and reports can be developed very quickly and

then iteratively refined.

An integrated CASE tool that supports a single methodology

from planning to implementation has its advantages. Training

of the tool and methodology go hand-in-hand with the developer

understanding how the methodology is applied with the tool.

The terminology is the same. Certainly having all the

information stored in one model is an advantage.

With respect to analysis and design, the only phase not

implemented in FOCUS is activity analysis. Yet even within

IEF, activity analysis is not enforced and is not required for

code generation. RAD as employed by MIS requires the same

systems analysis but does not employ tools to assist in the

analysis. If the system is complex, having an analysis tool

may be considered a benefit, if the results outweigh the time

invested. The integration factor for activity analysis with

the rest of the model is low -- only process transformation,

which can be used to initially create the process action

diagrams, is integrated with activity analysis, and

stereotyping without activity analysis achieves the same

results.

What are the advantages and disadvantages to IEF's

enforcement of the IE methodology? Both IEF and FOCUS require

a data model and MFD respectively before programming. Whereas

IEF may stop the developer in situations where the methodology

is enforced (before database transformation and code

181

generation), FOCUS will respond with an error message after

execution of the FOCEXEC (except for TABLE requests which have

on-line error correction). Is this enforced integration a

help or a hindrance? The answer depends on the "worth" or

reason for the integration in the first place and the tradeoff

in preventing an error versus catching it later on. For

example, the machine-led dialogue in which the developer has

to click on each word or phrase while performing action

diagramming may prevent some syntax and logic errors but will

not prevent bad programming. The consistency check, rather

than machine-led dialogue, should suffice in catching errors.

Having to specify the views in the procedure action diagram

before screen design hinders design as does the requirement to

consolidate all views in the procedure action diagram.

Experimentation and "what-if" scenarios are very difficult to

implement with these restrictions. On the other hand, the

enforcement of deleting items until all references to that

item are deleted, does ensure a "clean" model.

IEF does not enforce a certain sequence of application

development tasks for many of its tools. This flexibility

acknowledges the fact that application developers do not work

in sequence. They jump from tool to tool as new logic,

processes, or requirements occur or change. To paraphrase

Page-Jones, 1992, p. 36:

Developers often shift opportunistically and unpredictably
among different components of the system and at different
levels of detail. These components or subsystems can be

182

in different states at a particular time and the developer
may return to the same point with a different perspective
or idea. The tool should expect the human to build up
system understanding like a jigsaw. In general, current
CASE tools do not support this degree of freedom in a
robust and consistent manner.

IEF and FOCUS both support this flexibility but it comes with

a price: more errors. The developer is just as susceptible to

creating errors in IEF as in FOCUS as the author discovered.

IEF does not stop application development after a certain

number of errors although it is recommended to perform

consistency checks or with FOCUS, to execute the FOCEXEC

before preceding to the next step. True, IEF's consistency

checks on separate elements of the model such as a screen or

dialogue flow diagram assist in isolating errors; with FOCUS,

it is difficult to determine where the error exists if the

FOCEXEC "calls" other FOCEXEC's (Harr, 1992). Therefore,

there is no proof that IEF produces better quality systems

than FOCUS through enforcement of the IE methodology.

Others claim that IEF adds structure to application

development. Perhaps this viewpoint reflects the fact that

IEF is organized: it divides application development into

separate tasks with a management facility to organize it. The

developer can list all screens, action diagrams, procedures,

and processes, for example. With FOCUS, everything but the

data model is usually integrated into the FOCEXEC. It is the

responsibility of the programmer to apply sound, structured

183

programming techniques to prevent haphazardly written

programs.

Whether this separation in IEF is an advantage or not

depends on the price paid for the separation and the benefit

gained. For dialogue flow the price is too high, but for

screen design it is not. Perhaps the organizational utilities

of IEF should be added to FOCUS.

Automatic diagram and report generation would seem a

benefit for IEF since any changes to the model are instantly

reflected. Yet, IEF should not be judged better simply

because it has advanced and integrated diagramming and report

generation facilities; rather it should be judged on the

usefulness of the diagrams and the reports.

The time invested in creating some of the diagrams (in

particular the activity dependency diagram) should be

evaluated against their utility especially if the diagrams are

only going to be used for documentation. IEF, as an

integrated CASE product, is more than a tool to draw pictures.

The reports, many of which are lengthy and not user-friendly,

should not be generated if they are not going to be used. In

comparison to FOCUS, IEF's structure chart, screen design

facility, and action block usage chart are features that would

prove useful to any developer and represent IEF's strength in

organizing program structure. All other reports and diagrams

have not proven their utility compared to alternative methods

used by the FOCUS developers. Note, also, that most of the

184

diagrams and reports are for the system developer; many of the

changes, with the possible exception of the structure chart,

are not automatically reflected in the user's guide. Neither

tool can substitute for accurate and well-written user

instructions and descriptions.

IEF also claims to enhance user communication especially

through the use of its diagrams. Unless the users are trained

in the concepts and terminology of data modelling and/or

design, whether in IEF or FOCUS, no effective user

communication can occur. The diagramming manipulation

techniques of IEF, especially for the data model and screen

design, do allow changes to be reflected on the screen quickly

for the user.

Nevertheless, the best technique to enhance and refine the

requirements of a relatively simple system is to actually

demonstrate the system, to interactively prototype. "Analysis

paralysis" or spending too much time with the model should be

avoided since the best analysis and design techniques will

still not uncover all the changes discovered during

prototyping. The secret to achieving complete and accurate

system analysis and design lies with the questions asked by

the developer and the developer's flexibility to cope with

constant change.

Prototyping in IEF is restri.cted to screen prbtotyping

since data entry cannot be performed prior to coding. With

FOCUS, the developer "runs' the program ignoring errors that

185

are not relevant to the testing being performed. Consider the

difference in the work required to build an initial prototype

between the two tools. In IEF, the minimum work required for

constructing a system is a data model, process action diagram,

a procedure action diagram, a dialogue flow diagram, a screen

design, and load module packaging (how many executables are to

be created) as presented in Appendix F. And then, all errors

must be corrected before coding and testing. With FOCUS, one

"menu" FOCEXEC with control logic and a screen, and at least

one "called" FOCEXEC with its screen(s) and program is

required. No compiling or loading of code is necessary.

Error-free code is not a prerequisite to prototyping in FOCUS.

FOCUS therefore can prototype a system faster than IEF even if

stereotyping is used.

There may be some truth to the claim that with IEF more

attention is spent on analysis and design than on coding. This

is definitely true if a lot of time is spent on activity

analysis. Moreover, the model is more or less conceptual

until the construction phase when code is actually generated.

Traditional coding, although at a higher level, does occur

when creating and modifying the action diagrams. In reality

some of the coding like screen design has been replaced by

diagramming tools in IEF. This emphasis on analysis and

design is a step in the right direction.

A computerized methodology also offers advantages: the

methodology can be integrated with the tools as it is with

186

IEF; the methodology may have built-in computer-based

training; project management tools may be built into the

computerized methodology; the methodology is standardized;

and the methodology may be enforced through automation.

E. CONCLUSION

Both the analysis and design phases of information

engineering (IE) and rapid application development (RAD) and

their respective tools, IEF and FOCUS, have been evaluated

with respect to the software development environment of the

MIS department. The results are based on literature reviews,

interviews, and on a case study of the Minor Property

Accountability System which was developed with each tool and

methodology. The answer to the primary research question

posed by this thesis, the costs and benefits of introducing

information engineering and IEF compared to the current rapid

application development methodology and fourth generation

language FOCUS for analysis and design, are presented in the

following sections and in Figure 5.6.

Both methodologies perform data modelling and systems

analysis. Both construct executable systems by using a high-

level programming language with integrated control, processing

logic, and screen/report design. RAD usually employs smaller

teams, encourages active user involvement, has shorter

completion times, and emphasizes rapid prototyping. But the

concepts of IE and RAD, without any reference to the tools

187

that support the methodologies, are practically the same for

analysis and design. The differences lie in the

implementation, integration, and enforcement of the

methodologies through their tools.

The benefits of IEF range from its support of its

methodology to specific tools. First, IEF implements a single

methodology, IE, which implies a sequence of application

development. For some organizations, linking the tool with

the methodology adds structure to the development process.

IEF enforces the methodology by requiring a consistent model

before database transformation and before generating code.

This same enforcement, however, hinders quick prototyping.

Machine-led dialogue and consistency checks are used to

prevent errors. Enforcement within the tools is not strictly

enforced, allowing the developer the flexibility to move from

tool to tool or from phase to phase as needed. Integration is

achieved by incorporated all the information into one model.

Most changes are automatically reflected throughout the model

including the model reports. More emphasis is placed on

analysis and design than coding because IEF implements some of

its tools through diagramming facilities and the developer

never touches the code; it is instead generated. A

computerized methodology offers potential integration with

automated project management software, standardization, and

computer-based training. Standardization within IEF is

188

achieved through consistent options and menus, through screen

templates, and through business system defaults.

As for IEF's tools, the screen design facility;

organizational tools for managing screens, processes and

procedures; and the structure chart and action block usage

diagrams are its strengths. Its activity analysis tools are

effective only for complex systems. The work required for

view maintenance and dialogue flow are considered costs with

respect to rapid application development with IEF.

IEF is really not, in this author's opinion, a complete

and comprehensive CASE tool because it separates the model

from its targeted database facility and relies on the database

facility to perform some of its functions. Whereas these

functions may be separated in a large organization, for the

MIS department, they are not. The application developer is

the analyst, programmer, and database manager. For this

reason, IEF does not have an inherent security facility, a

report generator, or an action diagramming language with

numeric functions. The absence of these features is a major

deficiency when compared to FOCUS.

FOCUS supports the RAD methodology through its quick and

easy execution of data-driven prototyping. The current

methodology works well for the MIS department given the level

of experienced application developers, the small size of the

organization, the relative limited complexity of the systems

developed, and the fact that there is no need to trace

189

requirements to code. The absence of an enforced application

development standard is a weakness of MIS' RAD methodology.

FOCUS is a higher level programming language (it can do

more with less code) than the action diagramming language of

IEF. FOCUS can incorporate screen design, programming logic,

and dialogue flow in one executable procedure or FOCEXEC. Its

database management facilities are also integrated: security

can be incorporated within the data model and the database can

be scanned, graphed, and invoked for user adhoc reports.

FOCUS' screen design tool and lack of management facilities to

track program flow are its weaknesses.

Therefore, IEF offers the following benefits compared to

FOCUS: a one model implementation, a standard computerized

methodology, consistency checking to a low level of detail,

management tools for the developer, standardization throughout

the model, and superior diagramming features and screen

design. FOCUS offers the following benefits compared to IEF:

rapid prototyping, a higher level programming language, a

report facility, security within the data model, inherent

database management facilities, and excellent documentation.

Neither tool is better than the other in terms of integration,

enforcement and support of the methodology, system or model

documentation, enhanced user communication, activity analysis,

dialogue flow, or training/hotline support.

The benefits of IEF do not outweigh its costs. With

respect to the application development environment of the MIS

190

CRITERIA IEF FOCUS

ONE MODEL CONCEPT X

COMPUTERIZED METHODOLOGY X

PROTOTYPING X

INTEGRATION -.-.-.

CONSISTENCY CHECKING X

METHODLOLOGY ENFORCEMENT ---

STANDARDIZATION X

ENHANCED USER COMMUNICATION

DATA MODELLING X

ACTIVITY ANALYSIS --- ---

PROGRAMMING X

DIALOG FLOW

ORGANIZATIONAL TOOLS X

SCREEN DESIGN X

SYSTEM DOCUMENTATION --- - -

REPORT FACILITY X

SECURITY X

TRAINING/HOTLINE SUPPORT ---

DOCUMENTATION X

DATABASE UTILITIES X

CULTURAL IMPACT X

Figure 5.6 Comparison of IEF and FOCUS

department, the requirement to rapidly prototype (especially

to program and generate reports), to incorporate security

easily within the data model, and to interface directly with

191

the database clearly supports RAD and FOCUS as the application

development methodology and tool of choice for analysis and

design for the MIS department.

Further areas of research include extending the evaluation

to the information strategy planning (ISP) and technical

design (TD) and construction phases. In particular, the costs

and benefits of extensive system maintenance and testing could

be evaluated as well as the implementation and cultural impact

of introducing IEF as a shared, distributed model.

192

APPENDIX A: DATA MODELLING

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 08, 1992 13:16
Subset: (complete model) page 1

Entity Definition

Entity: PROPERTY

Description: Minor property information that uniquely identifies a piece of equipment

from $300 to $5000 exclusive and associates it with the purchasing information

Subject area: MINORPROPERTYACCOUNTABILITY

Properties: Min Occ: 15000 Avg Occ: 35000
Max Occ: 75000 Growth Rate: 20% per year

Attributes: TAG NUMBER
ORIGINALCOST
CURRENTCOST
SN
MODELVERSION
YEARACQUIRED
INVENTORYDATE
BLDG
ROOM
MFR
SOURCEDOCUMENT
PO
PROPERTYPASSNUMBER
REMARKS
ACTION

Relationships:
Always SIGNED-FOR one CUSTODIAN

can transfer.
Always IS-ASSIGNED one FSC

cannot transfer.

Identifiers:
1 TAGNUMBER

Entity Definition Report for the Property Entity (IEF)

193

FILE-MINOR,SUFFIX-FOC
SEGNAICEDEPT, SEGTYPES 1
FIELDNAME-DEPTCODE ,ALIAS-DEPTCD ,FORMAT-A5 ,DESC-* DEPARTMENT CODE' ,$

SEGNAME-CUSTN, PARENT-DEPT, SEGTYPE-S1
FIELDNAME-C MAILCODE,ALIAS-CUSTNMC,FORMAT-A4 ,DESC-'CUSTN HAIL CODE' 4
FIELDNAME'C-LST NH ,ALIAS=CUSTNLN,FORMAT-A20 ,DESC-'CUSTN LAST NAME' 4
FIELDNAME=CFRST NM ,ALIAS-CUSTNFN,FORMAT-A10 ,DESC-'CUSTN FIRST NAME' 4$
FIELDNAME-C PHONE NO,ALIAS-CPHONE ,FORMAT=A*1 DESC-'CUSTN PHONE NO' 4

DEFINE DEF_PH09E-/A8=EDIT(C PHONE NO, '999-9999') ;
SEGNAME-MINP.PROP, PARENT-CUSTN, SEGTY-PE-S1
FIELDNAME-TAG NO ,ALIAS-TAGNO ,FORMAT-A7 ,DESC-'TAG NUMBER'

FIELDTYPE2I ,$
FIELDNAHE-PUR REQNO ,ALIAS=PURR.EQ ,FORKAT=A7 ,DESC= 'PURCHASE REQ'

FIELDTYPE=ýY 4$
FIELDNAME-SOURCE DOCNO ,ALIAS=DOCNO ,FORMAT-A10 ,DESC-'PURCHASE ORDER' 4$
FIELDNAME-FSCCOIDE ,ALIAS-FSCNO ,FORMAT-A4 ,DESC='FED STOCK CODE'

FIELDTYPE=I ,$
FIELDNAME-ACQ_DATE ,ALIAS=ACQDT ,FORMAT-Y ,DESC='Y-YEAR ACQUIRED' ,
FIELDNAME=ACQCOST ,ALIAS=ACQCOST,FORMAT=D6.2 ,DESC='INITIAL COST' 4$
FIELDNAME=HANF HOD NO ,ALIAS=MODNO ,FORMAT-A12 ,DESC=IMANUFACTURE MODN',$
FIELDNAME-HANF SER NO ,ALIAS-SERNO ,FORMAT-A16 ,DESC-IMANUFACTURE SERI'

FIELDTYPEI= JT
FIELDNAMEMHANF NAME ,ALIAS=MFGNM ,FORMAT=A25 ,DESC='MANUFACTURE'
FIELDNAME=ITEM DESC ,ALIAS=IDESC ,FORMAT=A35 ,DESC='NOMENCLATURE' 1$
FIELDNAME=ITEM BLDGNO ,ALIAS=IBLDG ,FORMAT=A4 ,DESC='ITEM BLDG LOC' 4$
FIELDNAME=ITEM ROOM_NO ,ALIAS=IROOM ,FORMAT=A4 ,DESC='ITEM ROOM LOC' ,$
FIELDNAME=INV DATE ,ALIAS=INVDT ,FORMAT=YH4D ,DESC=IINVENTORY YMD' 4$

HELPMESSKGE = 'THE FORMAT FOR INVENTORY DATE IS YMD'
FIELDNAME=INV ADJ COST ,ALIAS=ADJCOST,FORMAT=D6.2 ,DESC=1ADJUSTED COST' ,
FIELDNAME=INV RMKS ,ALIAS=INVRMKS,FORMAT=A22 ,DESC=IREMARKS RE INV' ,
FIELDNAME=EX CdODE ,ALIAS=EXCD ,FORKAT=Al

ACCEPT = X B C F H T,DESC='EXCESS PROPERTY'4
FIELDNAME=ADP CODE ,ALIAS=ADPCD ,FORMAT=Al

ACCEPT = 4 5 6 7 8 9 X,DESC='CONDITION CODE'
FIELDNAME=AIS CODE ,ALIAS=AISCD ,FORMAT=A10 ,DESC'IAUTOMATED SYSTEM,,$
FIELDNAME=SUB-CODE ,ALIAS=SUBCD ,FORMAT=A10 ,DESC'ISUBSYSTEM CODE' ,$
FIELDNAME-LAB CODE ,ALIAS=LABCD ,FORMAT=A2 ,DESC= 'USED BY EC DEPT ',$
FIELDNAME=MANF YR ,ALIAS=MFGYR ,FORMAT=Y ,DESC='YEAR OF MANY' I$
SEGNAME-FSCSEG,S§EGTYPE=KU, PARENT=MINRPROP, CRFILE=FSCFILE, CRKEY=FSCCODE END

DBA-XXXXXXXX, $
USER-XXXXXXXX, ACCESS=RW. $
USER=XXXXXXXX, ACCESS=R, $
USER=XXXXXXXX, ACCESS=RW, RESTRICT=VALUE ,NAME-DEPT,

VALUE=DEPTCODE EQ 'EC' OR 'EL',$
USER=XXXXXXXXACCESS=RWi, RESTRICT=VALUE ,NAME-DEPT,

VALUE-DEPTCODE EQ 'PH'4,
USER-XXXXXXXX,*ACCESS=RW, RESTRICT-VALUE, NAME-DEPT,

VALUE-DEPT-CODE EQ 'OC',$
USER-XXXXXXXXACCESS=RW,RESTRICT-VALUE, KAME-DEPT,

VALUE=DEPTCODE EQ 'MR',$
USER-XXXXXXXXACCESS=RW, RESTRICT-VALUES NAME-DEPT,

VALUE-DEPT CODE EQ '03' OR '034' OR '034H' OR '035' OR '036',$
VALUE-OR '0392' OR '0363' OR '0364' OR '0371,$

USER-XXXXXXXX ,ACCESS=RW, RESTRICT-VALUE, NAME-DEFT,
VALUE-DEPT CODE EQ '05' OR '53' OR '54',$

USER-XXXXXXXX,ACCESS-RW, RESTRICT-VALUE, NAME-DEPT.
VALUE-DEPTCODE EQ '74',$

USER-XXXXXXXX ,ACCESS=RWi,RESTRICT=VALUE, NAME-DEPT,
VALUE-DEPTCODE EQ '81',$

Master File Description for the MPA System (FOCUS)

194

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 10, 1992 12:59

Subset: (complete model) page 1

Attribute Definition

Attribute: TAG NUMBER

Subject Area-.MINOR PROPERTYACCOUNTABILITY
Entity Type: PROPERTY

Description: Minor property tag number sticker affixed to the
equipment

Properties: . Mandatory Basic Text
Length: 12

Default: none

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 10, 1992 12:59
Subset: (complete model) page 2

Attribute Definition

Attribute: ORIGINALCOST

Subject Area: MINOR PROPERTYACCOUNTABILITY
Entity Type: PROPERTY

Description: Original cost as it appears on the purchase order;
does not include any additions or deletions to the
system; can be unknown if not the original owner

Properties: Mandatory Basic Number
Length: 6 Decimal places: 0

Default: none

Attribute Defintion Report for Tag_Number and OriginalCost (IEF)

195

CUSTODIAN

W H
H

mmq

~ IS ASSIGNED
" ×'15 11551NED TO

PROPERTY FSC

Model name: i¶NOR PROFERTY F1I0UNTABI.TY Sept. 19@, 1 O2
Subsef rame' Ff 11:0 Page: 1

Entity Relationship Diagram for the MPA System (IEF)

196

CHECK FILE MINOR PICTURE

0 NUMBER OF ERRORS- 0
NUMBER OF SEGMENTi- 4 (REAL= 3 VIRTUAL-)

NUMBER OF FIELDS- 29 INDEXES- 4 FILES= 2

NUMBER OF DEFINES- 1
TOTAL LENGTH OF ALL FIELDS= 315

iSECTION 01

STRUCTURE OF FOCUS FILE MINOR ON 08/25/92 AT 13.36.17

DEPT
01 S1

* **t *tt* * ***

*DEPTCODE **

* **

I
I

I CUSTN
02 I S1

*C MAILCODE **

*C-LST NM **

*CFRST NM **

C-PHONE NO.c s~O**

I
I
I

I MINRPROP
03 I S1

******** * ***

*TAG NO **I
*PUR-REQ NO **I
*FSC-CODE **I
*MANF_ SERNO **I

I
I
I
I FSCSEG

04 I KU
......
:FSC CODE :K
:FSCFIL
:FSC-DESC

.
FSCFILE

Master File Description Diagram for the MPA System (FOCUS)

197

APPENDIX B: ACTIVITY ANALYSIS

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 09, 1992 12:24
Subset: (complete model) page 1

Activity Hierarchy

Function 1 MINOR PROPERTY ACCOUNTABILITY
Function 2 1 MAIN-TAIN MINOR PROPERTY
Elem Proc 3 1.1 RECEIVE PROPERTY
Elem Proc 3 1.2 ADD MINOR PROPERTY DETAILS
Elem Proc 3 1.3 CHANGE PROPERTY DETAILS
Function 2 2 MAINTAI--CUSTODIAN
Elem Proc 3 2.1 ADD CUSTODIAN
Elem Proc 3 2.2 DELETE MINOR PROPERTYCUSTODIAN
Function 2 3 TAKE ACTION -
Elem Proc 3 3.1 DETERMINE ACTION
Elem Proc 3 3.2 DELETE PROPERTY
Elem Proc 3 3.3 TRANSFER PROPERTY
Function 2 4 PERFORM CALCULATIONS
Elem Proc 3 4.1 CALCULATE NO OF ITEMS
Elem Proc 3 4.2 CALCULATE VALUE_ FITEMS

Activity Hierarchy Report (IEF)

198

MHINOR PROPERTY RCIOUNTRBILITY

' RECEIVE PROPERTY

IRDD MfINOR PROPERTY DETRIL5

CHARJ&E PROPERTY DETAILS

MHRINTRIN CUSTODIRN

RtSEUTODIRN

ModelDEET MINOR PROPR 1~ ERTY CE2 U STRB]ITYSp.IS lI

I
AK

CTION

i -- •TRAWSER PROPERTY

P ERFORM CALCULATIONS

-- CALCULATE NO OF ITEMS

CAFLCULATE VALUE OF [TENS

fldelI name: M']}OR PRCFERTY Rf;BUNTABU]_TY Sept. 18, 1932 Hf

Subset name: Fi 1305 Page: I

Activity Hierarchy Diagram for the MPA System (IEF)

199

CALCULATE CALCULATE
END OF T NO OVALUE OF

ITEME M > EITEMS

INVENTOR)

Y INSPEi

Model name: MINOR PfUFERTY FUOUNTAB)UTY Sept. 10, 1932 FMO

Subset r•me: RI 13'88 Pae: 1

Process Dependency Diagram for Perform Calculations (IEF)

200

APPENDIX C: PROGRAMMING

-SET &OPT- ';
-SET &OPTR-' ;
-SET &&PFKEY-' ';
-SET &DEPT-'MR';
-TOPMENU
-SET &MSG' ;
-RETRY
-SET GOPT-' ';

-CRTFORM 1

-" MPA(MIS/JLH)
-"<D. &DATE/08"

-.. " * MINOR PROPERTY MAINTENANCE MENU

-" CODE OPTION"

-" A Add a new Property Item"
-" C Change data in an existing Property Item"
- L List Manufacture Serial Number by Key Description"
-" M Modify DEPT/CUSTN/TAG Keys - Instructions"
- F FSC Code and Nomenclature Lookup"
-• R Reporting Property Items"

-" <T.&OPT> <+5 ENTER CODE OR 'X' TO EXIT"
-"</9"
-IF &&PFKEY EQ 'PF03' OR 'PF15' THEN GOTO EXIT;
-IF &OPT EQ X GOTO EXIT;
-IF &OPT EQ A OR C GOTO GOODOPT;
-IF &OPT EQ L GOTO GOODSER;
-IF &OPT EQ M GOTO GOODMSG;
-IF &OPT EQ F GOTO RUNFSC;
-IF &OPT EQ R GOTO RUNRPTS;
-SET &MSG-'Please enter a valid response - Press ENTER to Continue... ';
-TYPE &MSG
-READ SYSIN
-GOTO RETRY
-RUNFSC
EX FSCRUN
-RUN
-GOTO TOPMENU
-GOODOPT
EX MODMP&OPT
-RUN
-GOTO TOPMENU
-GOODSER
EX MPASER
-RUN
-GOTO TOPMENU
-GOODMSG
-* This explains process for modifying key values and executes the MPA
-* change module if requested.
-CRTFORM LINE 3

FOCEXEC for the MPA System Main Menu (FOCUS)

201

_- * MINOR PROPERTY MODIFYING KEY VALUES

-wTo modify key values, enter appropriate code for excess property field"
-*(use T for Trnasfering an item or changing of keyed entry error); then"
-"notify Minor Property of the transaction by submitting a property
-"transfer form or an excess property memo. The Minor Property"
-*Accountability Officer will make the modifications to the data base."

-"Press ENTER to Continue..."
-"</9"
-GOTO TOPMENU

-RUNRPTS
-RPTRETRY
-SET &OPT=' ';
-SET &OPTR-1 ';
-CRTFORM 1
_.

-- MPA(MIS/JLH)
-"<D. &DATE/08"
-" **"

-" * MINOR PROPERTY MAINTENANCE MENU

-. CODE OPTION"

-" Ri Sum Items and Cost; Total and Department"
-" R2 Tag Report by Department or Tag Item"
-" R3 Tag Report by Department (11 X 8 1/2)"
- R4 Rejected Records Report"
-" R5 Duplicated Records Report"
-" R6 FSC Code Report by Department"
-" R7 FSC Code and Nomenclature Listing"
-" R8 Manufacture Serial Number Report"

-" <T.&OPTR> <+5 ENTER CODE OR 'X' TO EXIT"
"-"<'9"
-IF &&PFKEY EQ 'PF03' OR 'PF15' THEN GOTO EXIT;
-IF &OPTR EQ X GOTO EXIT;
-IF &OPTR EQ Ri OR R2 OR R3 OR R4 OR R5 OR R6 OR R7 OR R8
- THEN GOTO GOOD :1 &OPTR;
-SET &MSG-'PLEASE ENTER A VALID RESPONSE';
-TYPE &MSG
-SYSIN
-GOTO RPTRETRY
-GOODR1
EX MPATOT
-RUN
-GOTO RPTCHK
-GOODR2
EX MINTABZ
-RUN
-GOTO RPTCHK
-GOODR3
EX MINLAN
-RUN
-GOTO RPTCHK
-GOODR4

FOCEXEC for the MPA System Main Menu (continued) (FOCUS)

202

EX MPAREJS
-RUN
-GOTO RPTCHK
-GOODR5
EX KPADUPS
-RUN
-GOTO RPTCHK
-GOODR6
EX MINTABFS
-RUN
-GOTO RPTCHK
-GOODR7
EX FSCTAB
-RUN
-GOTO RPTCHK
-GOODR8
EX MPASER
-RUN
-GOTO RPTCH
-RPTCHK
-TYPE "Press ENTER to Continue..."
-READ SYSIN
-CRTFORM

-"</5 Report Completed...."
-" Enter 'C' to Continue, °R' for Reports, or 'X° to Exit: <T.&OPT>"
-"</9"
-IF &&PFKEY EQ 'PF03' OR 'PF15' THEN GOTO EXIT;
-IF &OPT EQ X GOTO EXIT;
-IF &OPT EQ R GOTO RPTRETRY;
-GOTO TOPMENU
-EXIT

FOCEXEC for the MPA System Main Menu (continued) (FOCUS)

203

Procedure Step: MINORPROPERTY-MAINTENANCE Sept. 09, 1992 13:11

MINOR PROPERTYMAINTENANCE
IMPORTS:

Entity View import new custodian (Optional)
cust code (Optional)

Entity-View import custodian (Mandatory)
cust code (Mandatory)

Entity -View import foc (Mandatory)
fac (Mandatory)

Entity View hidden import property (Optional)
tagnumber (Mandatory)

Entity View import property (Mandatory)
tag number (Mandatory)
originalcost (Mandatory)
current cost (Optional)
an (Optional)
model version (Optional)
year 'cquired (Optional)
inventory date (Mandatory)
bldg (Mandatory)
room (Mandatory)
mfr (Mandatory)
source document (Mandatory)
po (Mandatory)
property_pass number (Optional)
remarks (Optional)
action (Optional)

EXPORTS:
Entity View export-new custodian

cust code
dept-code

Entity--View export custodian
cust code
dept~code
lastname

Entity View export fsc
fsc
description

Entity View hiddenexport property
tag_number

Entity View export property
tag number
originalcost
current cost
an
model version
yearicquired
inventory_date
bldg
room
mfr
source-document
po
propertypass number
remarks
action

Procedure Action Diagram for Minor Property Maintenance (IEF)

204

LOCALS:
Entity View work custodian

cust code
Entity--View work property

tag number
originalcost
current cost
sn
model version
yearacquired
inventorydate
bldg
room
mfr
source-document
po
property_pass_number
remarks
action

ENTITY ACTIONS:

EXIT STATE IS all ok
MOVE import property TO export property
MOVE import fsc TO export fsc
MOVE import custodian TO export custodian
MOVE importnew custodian TO exportnew custodian

CASE OF COMMAND
- CASE add

USE addminoryproperty
WHICH IMPORTS: Entity View import fsc

Entity View import custodian
Entity View import property

WHICH EXPORTS: Entity View export fsc
Entity View export custodian
Entity View work property

IF EXITSTATE IS EQUAL TO all ok
MOVE work property TO export property
MOVE import fac TO export fsc
MOVE import custodian TO export custodian
MOVE work property TO hidden export property

- CASE transfer
IF hidden-import property tag number IS EQUAL TO import

property tag number
USE transfer minor_property

WHICH IMPORTS: Entity View import new custodian
Entity View import-property

WHICH EXPORTS: Entity View work custodian
Entity View work property

IF EXITSTATE IS EQUAL TO all ok
SET export-new custodian cus•_code TO SPACES
MOVE work property TO export property
MOVE work custodian TO export custodian

LOVE work property TO hiddenexport property

7ELSE
EXIT STATE IS display_before-update

Procedure Action Diagram for Minor Property
Maintenance (continued) (IEF)

205

CASE change
IF import property tagnumber IS EQUAL TO hidden import

property tag_number
USE change minor property details

WHICH IMPORTS: Entity -View import property
WHICH EXPORTS: Entity View work propertyL IF EXITSTATE IS EQUAL TO all ok

MOVE work property TO export property
OVE work property TO hiddenexport property

-ELSE

EXIT STATE IS display_beforeupdate

CASE delete
IF import property tag number IS EQUAL TO hidden-import

property tag_number
USE delete minorproperty

WHICH IMPORTS: Entity View import property
ELSEWHICH EXPORTS: Entity View work property

EXIT STATE IS display_beforeupdate

--CASE display
USE displayjminor_propertyWHICH IMPORTS: Entity View import property

WHICH EXPORTS: Entity View work property
Entity View export fsc
Entity View export custodian

IF EXITSTATE IS EQUAL TO all ok
MOVE work property TO export property
MOVE import fsc TO export fsc
MOVE import custodian TO export custodian
MOVE work property TO hiddenexport property

OTHERWISE
EXIT STATE IS invalid-command

Procedure Action Diagram for Minor Property
Maintenance (continued) (IEF)

206

MODIFY FILE MINOR
-* THIS INCLUDES DATA FOR MINOR PROPERTY DATABASE
COMPUTE PFKEY/A4-;
COMPUTE RCODE/I1-;
COMPUTE XFSCNM/A60;
CRTFORM LINE 1

MINOR PROPERTY CONTROL SYSTEM"

"Create a new miffor property record by entering the following data:"

"Department Code <OX
<DEPTCODE/05>"
" Custodian Mail Code <OX
<C_MAILCODE/04>"

TAG Number. <OX
<TAGNO/07>"

"FSC Code <FSCNO/04>"

"Please press the ENTER key to Continue"
"(or hit PF2 to Cancel I PF3 to Quit)"

IF PFKEY EQ 'PF021 GOTO TOP
ELSE IF PFKEY EQ 'PF031 GOTO EXIT;

COMPUTE RCODE = LOOKUP(FSCDESC);
MATCH DEPT CODE
ON NOMATCH INCLUDE
ON MATCH CONTINUE
MATCH C MAILCODE
ON NOMATCH INCLUDE
ON MATCH CONTINUE
MATCH TAG NO
ON NOMATCH TYPE
"DEPT CODE <DEPT CODE MAIL CODE <C MAILCODE TAG NO <OX
<TAGNO FSC CODE <FSCNO
"FSC DESC <FSC DESC "
ON NOMATCH CRTFORM LINE 1

"* • * * * * • * • • ADDING A MINOR PROPERTY ITEM <OX

"Cust Last Name <CUSTNLN/10> Cust First Name <OX
<CUSTNFN/10>"
"Cust Phone No <CPHONE/07>"

"Source Doc No <DOCNO/10> Purchase Request No <OX
<PURREQ/07>"
"Year Acquired <ACQDT/02> Initial Cost <OX
<ACQCOST/06>"
"Manf Model No <MODNO/12> Manf Serial No <OX
<SERNO/16>"
"Manf Name <MFGNM/25>"

*a

"Item Desc <IDESC/35>"
"Building Number <IBLDG/04> Room Number <OX
<IROOM/04>"
"Inventory YMD <INVDT/06> Adusted Cost <OX
<ADJCOST/06>"
"Inventory Remarks <INVRMKS/22>-

"AIS Code <AISCD/10> Subsystem Code <OX
<SUBCD/10>"

FOCEXEC for Changing a Minor Property Item (FOCUS)

207

" Press the ENTER to Add this Record (or hit P72 to Cancel<OX
/ PF3 to Quit)" ON
NOMATCH TYPE
... RECORD HAS BEEN ADDED. ON
NOMATCH INCLUDE ON
MATCH GOTO CASEX CASE
CASEX MATCH
TAG NO ON MATCH
CRTFORM

"RECORD IS ALREADY IN THE DATA BASE"

ON MATCH REJECT
ENDCASE
DATA
CHECK I
END
-EXIT

FOCEXEC for Changing a Minor Property Record (continued) (FOCUS)

208

BSD Action Block: CHANGE-MINORPROPERTYDETAILS Sept. 09, 1992 13:10

CHANGEMINORPROPERTY DETAILS
IMPORTS:

Entity View import property (Mandatory)
tag number (Mandatory)
originalcost (Mandatory)
current cost (Optional)
on (Optional)
model version (Optional)
yearacquired (Optional)
inventory date (Mandatory)
bldg (Manaatory)
room (Mandatory)
mfr (Mandatory)
source document (Mandatory)
po (Mandatory)
propertypassnumber (Optional)
remarks (Optional)
action (Optional)

EXPORTS:
Entity View export property

tag_number
originalcost
current-cost
sn
model version
year acquired
inventory date
bldg
room
mfr
source-document
po
property_pass-number
remarks
action

LOCALS:
ENTITY ACTIONS:

Entity View property
tag number
originalcost
current cost
sn
model version
year acquired
inventory date
bldg
room
mfr
source-document
po
propertypas snumber
remarks
action

READ property
WHERE DESIRED property tag number IS EQUAL TO import

property tag_number
WHEN successful

Process Action Diagram• for Changing a Minor Property Item (IEF)

209

-UPDATE property
SET original cost TO import property original cost
SET current cost TO import property current-cost
SET an TO 1mport property an
SET model-version TO import property model-version
SET year acquired TO import property year acquired
SET inventory date TO import property inventorydate
SET bldg TO iRport property bldg
SET room TO import property room
SET mfr TO import property mfr
SET source document TO import property source-document
SET po TO import property po
SET propertypassnumber TO import property

propertypas anumber
SET remarks TO import property remarks
SET action TO import property action

- WHEN successful
MOVE property TO export property

-- WHEN not unique
EXIT STATE IS property_nu

SWEN not found

EXIT STATE IS propertynf

Process Action Diagram for Changing a Minor
Property Item (continued) (IEF)

210

TRANSFER MINOR
PROPERTY

DISPLOY MINOR
PROPERTY

HINOR PROPERTY ADO MINOR
MAINIENANCE PROPERTY

DELEIE MINOR
,PROPERTY

CHANGE MINOR PR
,OPERTY DETAILS

Model name: JOR PRUERTY RCIOINTAB1.ITY Sept. 19, 19 Mix
Subset ame: ill 13:23 Page: 1

Structure Chart Diagram for the MPA System (IEF)

211

rMINOR FROPERTY A-'DD NENOR
MAINTENANCE , ROPERTY

Model name: MJOR PROPERTY FEWUNTABLITY Sept. Wg, 199 IX
Subset mme: i 13-:29 Pae* 1I

Action Block Usage Diagram for Add Minor Property (IEF)

212

APPENDIX D: DIALOG FLOW

Minor Property System Flow Chart
A)

Main Menu Add EX MODMPA Enter Data Cnt .A

EX MPA

N V

hang EX MODMPC Edit Recor-Cont

N

Display
Keys____ _

Instructions
N

N

NN<Ser E X M PAS-ER Prt >Serial No

N

Display
FSC EX FSCRUN Windows

FSC List

N

N
A Rpt R

MPA System Flow Chart

213

njJ -A

•1D•flhHP[tIg miI~fICI~~[,=

FTIlHh M1110if 011=

i = i

GRIM llEIODINE 11FI

ITI

Dialog Flow Chart for the MPA System (IEF)

214

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 09, 1992 12:33
Subset: (complete model) page 1

Procedure Step Definition

Business System MINORPROPERTY ACCOUNTABILITY
Procedure MINOR PROPERTY MAINTENANCE
Procedure Step MINOR-PROPERTYMAINTENANCE

Description:

PF Key Definitions:
Key Command Type Screen Display

06 FSC Local YES

Model : MINOR PROPERTY ACCOUNTABILITY Sept. 09, 1992 12:33
Subset: (complete model) page 2

Procedure Step Definition

Dialog Flow Link from
Business System MINOR PROPERTY ACCOUNTABILITY
Procedure MINOR -PROPERTY-MAINTENANCE
Procedure Step MINORPROPERTYMAINTENANCE

To
Procedure LIST FSCS
Procedure Step LIST FSCS

Description: FLOW TO LIST FSC WHEN THE USER ENTERS THE WRONG FSC,
CAN SELECT FROM THE FSC LIST AND WILL RETURN THE
SELECTED FSC

Flows on exit states:
FSCS NF

AuToflow on LIST command.

Execute destination with DISPLAY command.

Returns on exit states:
RETURN REQUESTED

Autoflow on RETURN command.

Display on return with no command.

Data returned to
View IMPORT of entity FSC

Attributes:
FSC

from
View RETURN FROM LINK of entity FSC

Attributes:--
A FSC

Procedure Step Definition Report from Minor Property
Maintenance to List FSC's (IEF)

215

"APENDIX 3: SCREEN DESIGN

IH: MM: 55
MIOR PRO]PERTY AC~COUNTABILITY S~IS[M HM-DD-YY

LIST F¶SC

SEt [SC DEfVCIP1IfON

x xxx xxxxxxxxxxxxxxxxxx
x xxx xxxxxxxxxxxxxxxxxx

x xxx xxxxxxxxxxxxxxxxxx
x xxx xxxxxxxxxxxxxxxxxx
X KXx vxxxxxxxxxxxxxxxxx

x xxx vxxxxxxxxxxxxxxxx
K KXx xxxxvxxxxxxxxxxxxx

x~ ~~~~I'I Xxx 10 xvxxxxxxxX~ FXxxx

((ERR>)) x ((ER »((E XX (((ER))> (((ERR >)) ((ERR)> (((E
Lis FSCx Screen for the MPA System (IEF)x

x xx xxxxxxxxxxxxxxx216xxxx

IRRNCODE fIH:MM1M55
MINOR PROP[RTY ACCOUNTABILITY SISTEM M-DY

MINOUR PROFERlY MFIINEWNANE
PROPEPTI

TAG OuBER . . . XXXXX
CUJ¶ CODE NEW CIJ5I CODE XXX
DEPT CODE NEWX DEPT CODE ~Xxxx

ORIGINAL WSJ1 111119
CUM~ENI OT W . Z 1119
SN .. xxxXX~xx X~Xxxxx
MODEL VERSION xx~x~xxxxxx
rSC XX Press FG for a [SC listing
YEAR~ ACQUIR[D x
BLDG 7119 ROOMl XX
INWEN10RY DWE ~ f'friMD
MFR XXXXXXXXXXX

5OLIRC[DOOJIENI XXXXXXXX
PO0 .. #XXXXXX

PRHPRIY MfSS NVI'DER ~XXX

(ERR k) (((ERR)>» (([RR >)) (((ERR))> ((ERR >)) (((ERR W> (((ER
[rater Cornand (((NI1 >)) (((

flodelI namne: M¶1OR PROUERTY FEOUMTRB3LTY Sept. 19, 192 5

5Subset name:- FU.. 13:14 Pje: I

minor Property maintenance Screen (IEF)

217

APPENDIX F: 13? SUPPORT FOR INFORMATION ENGINEERING

Planning MTX OH M AHD ADD

Mau* ~ I ga.,tfil Subw wscI
P,o.in airwt Area Hierarch, eefdfc

Analysis ADD S/B T77
~um Sft use"

EnternalPTS/B
Design

PrWorostation

Construchion C donstuto

Genration *8 Generationn

Screens. Exectutable

GUts Application

Tablesy J

IEF Support for Information Engineering
(Shaded Diagrams Required for Construction)

218

LIST OF REFERENCES

Alavi, M., "Mixing Prototyping and Data Modeling for Information-
System Design," IEEE Software, pp. 86-91, May 1991.

Agresti, W. W., New Paradigms for Software Development, pp. 1-11,
IEEE Computer Society Press, 1986.

Bloor, R., "Repository Technology: CASE tools that use repository
technology will provide significant increase in development," DBMS,
v.4, pp. 17-19, December 1991.

Burden, L., "Rapid Application Development," Computer Conference
Newsletter, pp. 6-7, 7 May 1991.

Burke, J. P., "Tough CASE," NP Professional, v.5, pp. 30-37, July
1991.

Case, A. F., Information Systems Development: Principles of
Computer-Aided Software Engineering, pp. 150-160, Prentice-Hall,
1986.

Chikofsky, E. J., Martin, D. E., and Chang, H., "Assessing the

STate of Tools Assessment," IEEE Software, pp. 18-21, May 1992.

Computerworld, "CASE Tools pass benchmark," p. 60, 2 March 1992.

Corbin, D. S., "Establishing the Software Development Environment,"
Journal of Systems Management, v.42, p. 28-32, September 1991.

Datapro, Information Engineering Facility, pp. 1-7, July 1991;
reprint, McGraw-Hill Inc. (page references are to reprint edition)

Due, R. T., "In pursuit of enterprise maodeling," Database
Progamming and Design, v.4, pp. 54-59, September 1991.

Eastwood, Alison, "In focus: RAD: not an instant fix," Computing
Canada, v.17, pp. 17-19, 15 August 1991.

Eliot, L., "Information Engineering Facility," CASE Trends,
November/December 1991.

National Bureau of Standards Publication 500-148, Application
Software Prototyping and Fourth Generation Languages, by G. E.
Fisher, 1987.

Floyd, C., "A Comparative Evaluation of System Development Methods,
" in Information Systems Design Mehodologies: improving the
practice, Olle, T.E, Sol, A. A., Verrijin-Stuart, ed. pp. 19-37,
North-Holland, 5-7 May, 1986.

Forte, G., "Tools Fair: Out of the Lab, Onto the Shelf," IEEE
Software, pp. 70-75, May 1992.

Frey, W., Computer-Aided Software Engineering (CASE) Environment
Issues, Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1987.

219

Ginsberg M. and others, "Issues Involved in Sofware Methods
Selection and Evaluation, " in Second International Workshop on
Computer-Aided Software Engineering Advance Working Papers Volume
2, CASE '88, Cambridge, Massachusetts, July 12-15, 1988, Chikofsky,
E. ed., pp. 19-7 -- 19-10, 1988.

Guvarin, S.L., "Where does Prototyping Fit in IS Development,"
Journal of Systems Management, v. 42, pp. 13-16, February 1991.

Haas, M. S. and Hochstetler, M. L., Information Enginering of the
Curricular Officers' Segment of a Unified STudent Academic Databse
System for NPS, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1991.

Interviews between J. Harr, Programmer/Analyst, Naval Postgraduate
School, Monterey, California, and the author, 18, 20, 21, and 25
August.

Information Builders, Inc., "James Martin," FOCUS News, pp. 35-40,
Summer/Fall 1990.

Information Builders, Inc., Support Services for your Information
Center, pp. 3-16.

Information Builders, Inc., PC/FOCUS Release 6.0 for DOS Product
Fact Sheet, 1991.

Information Builders, Inc., FOCUS for IBM Mainframe, Users Manual
Release 6.5, Vol. I, 1990.

Information Builders, Inc., FOCUS for IBM Mainframe, Users Manual
Release 6.5, Vol. I1, 1990.

Jaakkola, J. E., and Drake, K. B., "ASDM: The Universal Systems
Development Methodology," Journal of Systems Management, v.42, pp.
6-11, February 1991.

James Martin & Co., "Architecting Enterprises for the 21st Century,
brochure, 1992.

Johnston, M. W., "European software umbrella," Datamation, v. 37,
pp. 32-34, 1 March 1991.

Kemerer, C. F., "Research Problems in the Managerial Evaluation of
Computer-Aided Software Engineering Tool Impacts," in Second
International Workshop on Computer-Aided Software Engineering
Advance Working Papers Volume 2, CASE '88, Cambridge,
Massachusetts, July 12-15, 1988, Chikofsky, E. ed., pp. 17-3 - 17-
6, 1988.

220

Keuffel, W., "Faking Top-Down Development," Computer Language, v.8,
pp. 35-40, September 1991.

Kemerer, C. F., "How the Learning Curve Affects CASE Tool
Adoption," IEEE Software, pp. 23-28, May 1992.

Keys, J., "How sofware is devleoped undergoing basic changes; with
GUI's, servers, objects and parallellism, Software Magazine, v. 12,
pp. 38-47, January 1992.

Loh, M., and Weston, R., "Reaping CASE Harvests," Datamation, pp.
31-34, 1 July 1989.

Manley, G., Classification and Evaluation of CASE Tools, Master's
Thesis, Naval Postgraduate School, Monterey, California, September
1990.

Martin, J., Rapid Application Development, MacMillian Publishing
Company, 1991.

Martin, J., Information Engineering (Book I: Introduction),
Prentice-Hall, 1989.

Martin, J., Information Engineering (Book II: Planning and
Analysis), Prentice-Hall, 1990.

Martin, J., Information Engineering (Book III: Design and
Contruction), 1990.

Martin, J., Fourth Generation Languages, Volume I, Principles,
Prentice-Hall, 1985.

Martin, J., Fourth Generation Languages, Volume II, Representative
4GLS, Prentice-Hall, pp.139-185, 1986.

Telephone conversation between J. McGrail, Team Leader, CASE
Technology, US Army Materiel Command Systems Integration and
Management Activity, and the author, June 1992.

McIninch, D., "Achieving Your Return on Investment in CASE,"
Database Management, pp. 16-17, April 1992.

Page-Jones, M., "The CASE Manifesto," CASE Outlook, January-
February 1992.

Paul, L. G., "Information Builders Inc. (The Datamation 100)
(Company Profile)," Datamation, v.38, pp. 64-65, 15 June 1992.

McParland, P., "Playing the generation game," EKE, v.6, p. 14-18,
June 1991.

221

Plauger, P.J., "Heresies of software design," Computer Language,
v.8, February 1991.

Pressman, R. S., Software Engineering, 3rd edition: A Practioner's
Approach, pp. 22-38, McGraw-Hill, Inc., 1992.

Interviews between M. Spencer, Director, Management Information
Systems, Naval Postgraduate School, Monterey, California, and the
author, 6 June 1992, 27 June 1992.

Software Technology Support Center, CrossTalk, p. 1., March 1992.

Sullivan-Trainor, M. L., "TI's IEF scores high for integration,
benefits delivery," Computerworld, pp. 72-77, 22 April 1991.

Swartout, W. and Blazer, R., "On the Inevitable Intertwining of
Specification and Implemetnation," in New Paradigms for Software
Development, ed. W. Agresti, pp. 26-29, 1986.

Teledyne Brown Engineering, Technical Report MC89-S/W-METH-0001, An
Approach to Evaluating Software Methods by R. Pirchner and others,
March 1989.

Texas Instruments, Business Area Analysis I, Student Guide Release
4.11, 1992.

Texas Instruments, "Introducing IEF 5.0," product brochure, 1991.

Texas Instruments, A Guide to Information Engineering Using the
IEP, 2nd edition, Texas Instruments, Inc., 1990.

Texas Instruments, Rapid Development Using the IEF, Texas
Instruments, Inc., 11 January 1991.

Texas Instruments, IEF Development Tutorial, Texas Instruments,
Inc., 11 February 1991.

Texas Instruments, Education Schedule 1992.

Uluakar, T., From Stuructured Methods to Information Engineering,
A Comparison, Texas Instruments Inc., pp. 1- 13, March 1991.

Whitten, J.L., Bentley, L. D., and Marolow, V. M., System Analysis
and Design Methods, 2nd edition, pp. 110-129, Irwin, 1989.

222

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Dean Barry A. Frew, Code 05
Dean of Computer and Information Services
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Myung Suh, Code AS/Su
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Ms. Lucille C. Clark, Code 53
Management Information Systems
Naval Postgraduate School
Monterey, California 93943-5000

6. Mr. Michael P. Spencer, Code 53
Management Information Systems
Naval Postgraduate School
Monterey, California 93943-5000

7. Ms. Jeffrie Penrod
Texas Instruments
Info Tech Group/IEF Group
5353 Betsy Ross Drive
Santa Clara, California 95054

8. Professor Tung Bui, Code AS/Bd
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

9. Mr. John P. McGrail
U.S. Army Material Command Systems
Integration and Management Activity
1222 Spruce Street
St. Louis, Missouri 63103-4159

223

10. Professor Richard Pirchner
Department of Computer Science
Monmouth College
West Long Branch, New Jersey 07764

11. Mr. John LeBaron
Software Engineering Directorate
U.S. Army Communications-Electronics Command
and Fort Monmouth
Fort Monmouth, New Jersey 07703-5000

12. Mr. Jim Vtn Buren
Software Technology Support Center
Hill Air Force Base, Utah 84056

13. Mr. Walter J. Utz, Jr.
Technology Transition Center
1132 Thorntree Court
San Jose, California 95120

224

